
Privacy-preserving Policy-based
Information Transfer

Emiliano De Cristofaro1, Stanislaw Jarecki1, Jihye Kim2, Gene Tsudik1

1 Computer Science Department, University of California, Irvine
2 Department of Mathematical Sciences, Seoul National University

Abstract. As the global society becomes more interconnected and more
privacy-conscious, communication protocols must balance access control
with protecting participants’ privacy. A common current scenario in-
volves an authorized party (client) who needs to retrieve sensitive infor-
mation held by another party (server) such that: (1) the former only gets
the information for which it is duly authorized, (2) the latter does not
learn what information information is retrieved. To address this scenario,
in this paper, we introduce and explore the concept of Privacy-preserving
Policy-based Information Transfer (PPIT). We construct three PPIT
schemes based, respectively, on: RSA, Schnorr and IBE techniques. We
then investigate various performance improvements and demonstrate the
practicality of proposed PPIT schemes.

1 Introduction

There are many scenarios where sensitive information is requested by some au-
thority due to some legitimate need. The challenge for the information owner
(server) is to allow access to only duly authorized information, whereas, the
challenge for the information requester (client) is to obtain needed information
without divulging what is being requested. We refer to this concept as Privacy-
preserving Policy-based Information Transfer or PPIT. To motivate it, we begin
with two envisaged scenarios:

Scenario 1. University of Lower Vermont (ULoVe) is confronted with an FBI
investigation focused on one of its faculty members (Alice). The university is
understandably reluctant to allow FBI unlimited access to its employee records.
For its part, FBI is unwilling to disclose that Alice is the target of investigation.
There might be several reasons for FBI’s stance: (1) Concern about unwar-
ranted rumors and tarnishing Alice’s reputation, e.g. leaked information might
cause legal action and result in bad PR for the FBI; (2) The need to keep the
investigation secret, i.e., preventing malicious insiders (ULoVe employees) from
forewarning Alice about the investigation.

Ultimately, ULoVe must comply with FBI’s demands, especially, if the latter
is armed with appropriate authorization (e.g., a court order) from, say, the US
Attorney General’s office. However, the authorization presumably applies only
to Alice. Assuming all communication between ULoVe and FBI is electronic,
there seems to be an impasse.

An additional nuance is that, even if ULoVe is willing to provide FBI unre-
stricted access to all its employee records, FBI may not want the associated lia-
bility. This is because mere possession of ULoVe sensitive employee information
would require FBI to demonstrate that the information is/was treated appro-
priately and disposed of when no longer needed. Considering a number of recent
incidents of massive losses of sensitive government and commercial employees’
records, FBI might be unwilling to assume additional risk.

An ideal solution would be as follows: ULoVe learns that FBI is most likely
investigating someone who might be an employee of ULoVe. No one outside FBI
learns who is being investigated. This holds even if someone in ULoVe tries to
manipulate the process attempting to learn more information. For its part, FBI
learns nothing about any ULoVe employee who does not meet the exact criteria
specified in its court order.

Scenario 2. An international airline (VultureAir) has daily flights transiting the
United States. US Department of Homeland Security (DHS) maintains a secret
terrorist watch-list and needs to determine whether any names on the watch-
list match those on the passenger manifest of each VultureAir flight. Bound by
some international privacy treaty (or its own policy), VultureAir is unwilling to
disclose its passenger list to DHS. However, as ULoVe in Scenario 1, VultureAir
is ready to comply with DHS’s request as long as each entry on the DHS’s watch-
list is individually and duly authorized by the independent Judicial Branch.

Ideally, VultureAir transfers information to DHS only about those passengers
for which DHS has valid authorizations. In the process, VultureAir does not
learn whether DHS has an authorization on any of its passengers. In particular,
VultureAir can learn nothing about the DHS watch-list by manipulating its own
passenger lists. More generally, no party learns any material it should not have,
either by law or because of liability. Nonetheless, DHS retrieves all information
to which it is entitled.

What is PPIT? Privacy-preserving Policy-based Information Transfer (PPIT)
is applicable to any scenario with a need to transfer information – and, more
generally, perform some data-centric task – between parties who:

1. Are willing and/or obligated to transfer information in an accountable and
policy-guided (authorized) manner.

2. Need to ensure privacy of server’s data by preventing unauthorized access.
3. Need to ensure privacy of client’s authorization(s) which grant it access to

server’s data.

PPIT vs Prior Techniques. As evident from the remainder of this paper,
PPIT’s main technical challenge is how to enable the server to efficiently and
obliviously compute proper authorization decisions. This might sound similar to
the goals of certain other concepts, which are overviewed in this section.

Of course, PPIT could be trivially implemented with the aid of on-line trusted
third party (TTP) which could take data from both parties and perform neces-
sary operations. However, on-line TTPs are generally unrealistic, for a number

of well-known reasons. As any two-party security problem, PPIT could be imple-
mented using generic secure computation techniques [22]. However, such generic
techniques are unlikely to yield protocols efficient enough to be used in practice.

PPIT has some features in common with Private Information Retrieval (PIR)
[7]. Although PIR aims to ensure privacy of client’s query target(s) from the
server, a PIR server is willing to unconditionally release any and all of its data to
the client. In symmetric PIR [11, 16], the server releases to the client exactly one
data item per query. However, there is no provision for ensuring that the client is
authorized by some trusted authority to retrieve the requested item. Also, a PIR
protocol must communicate strictly fewer bits than the the server’s database size.
Whereas, PPIT involves no such requirements; indeed, PPIT protocols presented
in this paper have linear communication complexity.

PPIT can be thought of a variant of secure set intersection [10, 12, 13]. For
example, in Scenario 2, a secure set intersection protocol would allow DHS and
VultureAir to privately compute an intersection of their respective lists (terror
watch-list and passenger manifest). However, note that both parties could inject
arbitrary data into the protocol. In contrast, in PPIT, the client is forced to
request data for which it has valid authorization obtained from appropriate
authorities. Thus, PPIT is a strictly stronger policy-based version of the secure
set intersection problem: its privacy guarantees are the same, but the client’s
input is controlled by well-defined access policies, e.g., authorization certificates.

PPIT is also related to Public Encryption with Keyword Search (PEKS) [2]
or searchable encrypted logs [21]. The server could use a PEKS scheme to attach
encryptions of keywords to encrypted database entries, which can be tested by
the client only using a corresponding trapdoor. Although this can be used to
implement PPIT, it is unclear how to make the resulting protocols efficient using
existing PEKS schemes in the setting where the client has multiple credentials.
However, as shown in this paper, one can indeed construct an efficient PPIT
scheme following this approach using Anonymous Identity-Based Encryption:
the server encrypts each entry under its keyword, and the client decrypts it
using the decryption key corresponding to the same keyword.

Finally, another closely related construction is Oblivious Signature-Based En-
velope (OSBE) [14]. Like PPIT, OSBE allows the server to release some infor-
mation to the client conditional upon the latter’s possession of a signature (on a
message known to both parties, e.g. a keyword) by a trusted authority, while the
server learns nothing about the signatures held by the client. This can be imple-
mented using Identity-Based Encryption, or using standard signature schemes,
such as RSA, Schnorr, and DSS [14, 17]. However, unlike PPIT, an OSBE scheme
does not guarantee privacy of all information about the client’s authorization.
Nevertheless, as shown in this paper, OSBE schemes can be adapted to obtain
efficient PPIT instantiations.

Contributions. This paper makes several contributions: (1) it defines a new
cryptographic notion, PPIT, motivated by certain practical scenarios, (2) it
shows that PPIT can be resolved under a variety of standard assumptions, (3) it
constructs several efficient PPIT protocols for the case of the client with multiple

authorizations, and (4) it demonstrates feasibility of proposed PPIT instantia-
tions with experimental results obtained from prototype implementations.

2 Privacy-preserving Policy-based Information Transfer

This section describes out notation as well as the participants and the compo-
nents of a PPIT scheme.

Notation. A function f(τ) is negligible in the security parameter τ if, for every
polynomial p, f(τ) < 1/|p(t)| for large enough t. Throughout this paper, we use
semantically secure symmetric encryption and we assume the key space to be τ1-
bit strings, where τ1 is a (polynomial) function of a security parameter τ . We use
Enck(·) and Deck(·) to denote symmetric-key encryption and decryption (both
under key k), respectively. We also use public key signature schemes, where each
scheme is a tuple of algorithms: DSIG = [INIT, SIG, V ER], representing key
set-up, signature generation and verification, respectively. DSIG.INIT (τ2) re-
turns a public/private key-pair, where τ2 is a polynomial function of τ .DSIG.SIG(SK,m)
returns a signature σ on message m, whereas, DSIG.V ER(PK, σ,m) returns 1
or 0 indicating that σ is valid or invalid signature on m, under PK. Finally, we
use a← A to designate that variable a is chosen uniformly at random from set
A.

Players/Entities. A PPIT scheme involves three players:

(1) Server (S): stores the set I = {(ID,DID) | ID ∈ {0, 1}l}. ID uniquely
identifies a record and DID denotes the associated information.

(2) Client (C): has a pair (σ, IDC), where σ is authorization for IDC issued by
the court and IDC is an l-bit string.

(3) Court: a trusted third party, which issues authorizations for accessing a
record identified by a given string ID.

Components. Without loss of generality, we assume that an authorization σ
for record with identifier ID is a signature under CA’s key on ID. Therefore we
define a PPIT scheme as a tuple of the following three algorithms:

(1) Setup(τ): It is an algorithm executed by the court. Given a security pa-
rameter τ , it generates – via DSIG.INIT – a key-pair (SK,PK) for the
signature scheme DSIG. The court then publishes the public key PK.

(2) Authorize(SK, ID): It is an algorithm executed by the court to issue an
authorization σ = DSIG.SIG(SK, ID) on an identifier string ID. Note
that if σ = Authorize(SK,ID) then DSIG.V ER(PK, σ, ID) = 1.

(3) Transfer: It is an interactive algorithm (protocol) executed between server
S and client C, on public input PK, on S’s private input (IDS , D) and
C’s private input (IDC , σ). At the end of transfer, S has no outputs and C
outputs D if IDS = IDC and DSIG.V ER(PK, IDC , σ) = 1.

3 Security Requirements

We now describe PPIT security requirements.

Correctness. A PPIT scheme is correct if, at the end of transfer, C outputs D,
given that:

(1) (SK,PK)← Setup(1τ) and σ = Authorize(ID) for some ID,
(2) S and C respectively run the transfer protocol on input (ID,D) and (ID, σ).

Security. Informally, security of a PPIT scheme means that only clients au-
thorized to access data D can learn any information about D. Formally, we say
that a PPIT scheme is secure if any polynomially bounded adversary A cannot
win the following game, with probability non-negligibly over 1/2. The game is
between A and a challenger Ch:

1. Ch runs (PK,SK)← Setup(1τ)
2. A, on input PK, adaptively queries Ch a number n of times on a set of

strings Q = {IDi|IDi ∈ {0, 1}l, i = 1, · · · , n}. For every IDi, Ch responds
by giving A a signature σi ← DSIG.SIG(SK, IDi)

3. A announces a new identifier string, ID∗ /∈ Q, and generates two equal-
length data record (D0

∗, D1
∗)

4. Ch picks one record by selecting a random bit b← {0, 1}, and executes the
server’s part of the transfer protocol on public input PK and private inputs
(ID∗, Db

∗). We denote the protocol transcript by T ∗.
5. A outputs b′ (and wins if b′ = b).

Server Privacy. Informally, a PPIT scheme is server-private if only an autho-
rized client learns any information about IDS which S inputs into the transfer
protocol with C. Formally, we say that a PPIT scheme is server-private if no
polynomially bounded adversary A can win the following game with probability
non-negligibly over 1/2. The game is between A and Ch:

1. Ch runs (PK,SK)← Setup(1τ)
2. A, on input PK, adaptively queries Ch a number n of times on a set of

strings Q = {IDi|IDi ∈ {0, 1}l, i = 1, · · · , n}. For every IDi, Ch responds
by giving A a signature σi ← DSIG.SIG(SK, IDi)

3. A announces two new identifier strings, (ID0
∗, ID1

∗) /∈ Q, and generates a
data record D∗

4. Ch picks one identifier by selecting a random bit b← {0, 1}, and executes the
server’s part of transfer on public input PK and private inputs (IDb

∗, D∗).
We denote the protocol transcript by T ∗.

5. A outputs b′ (and wins if b′ = b).

We note that security and server-privacy games could be merged into one. It is
possible to modify A to announce two pairs (ID0

∗, D0
∗), (ID1

∗, D1
∗) and let Ch

pick a random bit b and execute the server’s part of transfer on input (IDb
∗, Db

∗).
The security property alone is obtained by restricting A’s challenge query so that
(ID0

∗ = ID1
∗), while server-privacy alone is obtained if (D0

∗ = D1
∗).

Client Privacy. Informally, client privacy means no information is leaked about
client’s authorization and ID to a malicious server. Formally, a PPIT scheme
is client-private if no polynomially bounded adversary A can win the following
game with the probability non-negligibly over 1/2. The game is between A and
Ch:

1. Ch executes (PK,SK)← Setup(1τ)
2. A, on input SK, chooses two strings ID0

∗, ID1
∗ and two strings σ0

∗, σ1
∗

3. Ch picks a random bit b← {0, 1} and interacts with A by following transfer
on behalf of client on public input PK and private inputs (IDb

∗, σb
∗)

4. A outputs b′ (and wins if b′ = b).

For the sake of simplicity, we say that a PPIT scheme is private if it is both
server- and client-private.

Client Unlinkability. Informally, client unlinkability means that a malicious
server cannot tell if any two instances of the transfer protocol are related, i.e.,
executed on the the same inputs IDC and/or σ. Formally, we say that a PPIT is
client-unlinkable if no polynomially bounded adversary A can win the following
game with probability non-negligibly over 1/2. The game is between A and Ch:

1) Ch executes (PK,SK)← Setup(1τ)
2) A, on input SK, chooses two strings ID0

∗, ID1
∗ (where it could be that

ID0
∗ = ID1

∗) and two strings σ0
∗, σ1

∗

3a) Ch interacts with A by following transfer on behalf of client on public input
PK and private inputs (ID0

∗, σ0
∗)

3b) Ch picks a random bit b← {0, 1} and interacts with A by following transfer
on behalf of client on public input PK and private inputs (IDb

∗, σb
∗).

4) A outputs b′ (and wins if b′ = b).

In other words, observing transfer does not give A any advantage in the game
described for client privacy.

4 Building blocks

In this section, we present three PPIT variants, based on RSA signatures scheme
[19], Schnorr signature scheme [20], and Anonymous Identity-Based Encryp-
tion (IBE) [3]. For ease of presentation, we assume that S stores just one pair:
(IDS , DIDS

). The full versions of these schemes, described in Section 5, work
with multiple records on S and/or multiple authorizations on C.

4.1 RSA-PPIT

We show how to obtain PPIT by adapting the RSA-based Oblivious Signature
Based Envelope (OSBE) scheme of [14].

Setup. On input of security parameter τ , generate a safe RSA modulus N =
pq, where p = 2p′ + 1, q = 2q′ + 1, and p, q, p′, q′ are primes. The set of all
quadratic residues mod N is denoted as QRN . The algorithm picks a random
element g which is a generator of QRN . RSA exponents (e, d) are chosen in
the standard way. The secret key is SK = (p, q, d) and the public key PK =
(N, g, e). The algorithm also fixes a full-domain hash function H : {0, 1}∗ → ZN ,
H ′ : {0, 1}∗ → {0, 1}τ1 .

Authorize. To issue an authorization on ID to C court computes an RSA
signature on ID, σ = (hID)d (mod N), where hID = H(ID). (The signature on
ID is verified by checking if σe = H(ID).)

Transfer. This is a protocol between C and S where public input is PK =
(N, e, g), and C’s private input is (IDC , σ), where σe = H(IDC) mod N and S’s
private input is (IDS , D). The protocol is shown in Figure 1.

C on input: IDC , σ, PK = (N, g, e) S on input: IDS , D, PK = (N, g, e)
where σe = H(IDC)

r ← ZN/4, µ = σ2 · gr mod N
µ // If µ /∈ Z∗N then abort.

R = gez mod N , for z ← ZN/4
KS = (µ)ez · (HIDS)−2z mod N
kS = H ′(KS)

KC = Rr mod N , kC = H ′(KC)
〈R,C〉oo C = EnckS (D)

D′ = DeckC (C)

Fig. 1. RSA-PPIT

To see that RSA-PPIT is correct, observe that, when IDC = IDS :
KS = (µ)ez ·H(IDS)−2z = (H(IDC))2z · grez ·H(IDS)−2z = gerz = Rr = KC .

Recall that this scheme is based on RSA-OSBE from [14]. However, in the
first step of the transfer, C picks µ = σ2 · gr instead of σ · hr. The use of g –
instead of h = H(ID) – allows C to batch computation in case it has multiple
authorizations. (For more details, see Section 5). Also, we square σ to guarantee
that µ is in QRN , as shown in the proof in Appendix C, where we present the
complete proof of security, privacy, and client-unlinkability for RSA-PPIT.

4.2 Schnorr-PPIT

We show here a PPIT construction using Schnorr-OSBE scheme [6]. It’s proof
of security, privacy, and client-unlinkability is in Appendix C.

Setup. On input of a security parameter τ , this algorithm creates a Schnorr
key: (p, q, g, a, y), where p, q are primes, s.t. q divides p−1 but q2 does not divide
p − 1, g is a generator of a subgroup in Z∗p of order q, a is picked randomly in

Z∗q , and y = ga mod p. The public key is PK = (p, q, g, y) and the secret key
is SK = a. The algorithm also defines hash functions H : {0, 1}∗ →∈ Z∗q , and
H ′ : {0, 1}n →∈ {0, 1}τ1 .

Authorize. To issue authorization on string ID, court computes a Schnorr
signature on ID, σ = (X, s) where X = gk mod p and s = k+a·H(ID,X) mod q
for random k ← Z∗q . The signature on ID is verified by checking whether gs =
X · yH(ID,X) mod p.

Transfer. This protocol (see Figure 2) is between C and S, where public input
is PK = (p, q, g, y), and C’s private input is (IDC , σ = (X, s)) s.t. gs = X ·
yH(IDC ,X) mod p and S’s private input is (IDS , D).

C on input: IDC , σ = (X, s) S on input: IDS , D, PK = (p, q, g, y)
PK = (p, q, g, y)

gs = X · yH(IDC ,X) mod p
X // If X(p−1)/q 6= 1 mod p then abort.

R = gz mod p, for z ← Z∗q
KS = (yH(IDS ,X)X)z mod p, kS = H ′(KS)

KC = Rs mod p, kC = H ′(KC)
〈R,C〉oo C = EnckS (D)

D′ = DeckC (C)

Fig. 2. Schnorr-PPIT

To show that Schnorr-PPIT is correct, we observe that, when IDC = IDS :
KS = (yH(IDS ,X)X)

z
= (gaH(IDS ,X)gk)z = (gaH(IDC ,X)+k)z = gsz = Rs = KC

4.3 IBE-PPIT

Here we show a PPIT construction using any anonymous Identity-Based Encryp-
tion (IBE) scheme, e.g. [3, 4]. Recall that IBE is a form of public key encryption
where any string can be used as a public key. A trusted third party, called a
Key Distribution Center (KDC), has a master key, which is used to generate the
private key corresponding to any public key string.

Setup. On input of a security parameter τ , the Court runs the setup algorithm
of the IBE system to generate the KDC master key and global IBE system
parameters, denoted as PK.

Authorize. As shown in [3], selective-ID semantically secure IBE implies CMA-
secure signatures. The authorization on ID is thus simply σ – the IBE private
key corresponding to the public key ID. The verification tests that the private
key corresponds to the given ID.

Transfer. IBE implies a non-interactive PPIT scheme: S encrypts D under the
identifier string IDS and C decrypts it using its authorization σ, which is an
IBE private key identifier corresponding to C’s string IDC .

We observe that this is similar to the IBE-based Signature Based Envelope
(OSBE) scheme previously explored in [14]. However, in IBE-based OSBE, the
use of anonymous IBE to achieve key-privacy (in the sense of [1]) is optional.
Whereas, this is a fundamental requirement in our scheme: an adversary who
correctly guesses the encryption key used to generate a ciphertext would imme-
diately break server privacy.

To see that IBE-PPIT is correct, observe that, when IDC = IDS , C has the
corresponding authorization from the court, i.e. the private decryption key, and
hence will successfully decrypt data D. The complete proof of security, privacy,
and client-unlinkability for IBE-PPIT are in Appendix C.

5 Extensions

Thus far, we considered solutions for a simple scenario where client is authorized
to access at most one record and server stores at most one record. We now
consider the case of multiple authorizations/records.

Multiple Records. Consider a setting where server stores a set of n records,
denoted by by I = {(IDi, Di)|IDi ∈ {0, 1}l}, with |I| = n. Since one of the
PPIT requirements prevents server to know which record is requested, server
has to send all of its records. A näıve solution would be to reiterate the inter-
action presented in the previous section n times. Specifically, the PPIT transfer
protocol would require: (i) server to perform and send n encryptions under n
different Diffie-Hellman [8] keys, and (ii) client to try decrypting all received
encryptions to output the authorized record. This would result in O(n) encryp-
tions, bandwidth utilization, and decryptions.

Hence, we aim to speed up the computation by using a two-pronged approach:

1. We let server use same random values, z, across all records, so that encryp-
tions can be batched.

2. We let server accompany every encryption with a tag, i.e. a hash function
of each Diffie-Hellman key, Ksi

. In turn, client computes the tag on its own
Diffie-Hellman key, KC so that it decrypts only the record accompanied by
the matching the tag.

Fast decryption in RSA-PPIT. We assume that in the setup algorithm, an
additional cryptographic hash function H ′′ is chosen. The protocol is shown in
Figure 3. As a result, the computation for client is reduced to O(1). However, we
cannot speed up server-side computation without violating client-privacy. (See
Appendix C for proofs.)

Fast decryption in Schnorr-PPIT. We assume that in the setup algorithm,
an additional cryptographic hash function H ′′ is chosen. The protocol is shown
in Figure 4. Similar to RSA-PPIT, client’s computation cost becomes constant,
but there does not seem to be way to speed up server-side computation without
violating client-privacy. (The proofs are deferred to Appendix C.)

C on input (IDC , σ, PK = (N, g, e)) S on input ({IDi, Di}, PK = (N, g, e))
where σe = H(IDC)

r ← ZN/4, µ = σ2 · gr mod N
µ // If µ /∈ Z∗N then abort.

R = gez mod N , for z ← ZN/4
For every i compute:
KSi = (µ)ez · (HIDi)−2z mod N
kSi = H ′(KSi)
Ci = EnckSi

(Di), ti = H ′′(KSi)

KC = Rr mod N , kC = H ′(KC)
〈R,
−→
C,
−→
T 〉oo −→

C = {Ci} and
−→
T = {ti}

t∗ = H ′′(KC)
If ∃i ∈ {1, ..., n}, s.t. ti = t∗

Output D′ = DeckC (Ci).

Fig. 3. RSA-PPIT with multiple records

C on input: (IDC , σ = (X, s) S on input: ({IDi, Di}, PK = (p, q, g, y))
PK = (p, q, g, y))

for gs = X · yH(IDC ,X) mod p
X // If X(p−1)/q 6= 1 mod p then abort.

R = gz mod p, for z ← Z∗q
For every i compute:

KSi = (yH(IDi,X) ·X)
z

mod p
kSi = H ′(KSi)
Ci = EnckSi

(Di), ti = H ′′(KSi)

KC = Rs mod p, kC = H ′(KC)
〈R,
−→
C,
−→
T 〉oo −→

C = {Ci} and
−→
T = {ti}

t∗ = H ′′(KC)
If ∃i ∈ {1, ..., n}, s.t. ti = t∗

Output D′ = DeckC (Ci).

Fig. 4. Schnorr-PPIT with multiple records

Fast decryption in IBE-PPIT. Similarly to RSA-PPIT and Schnorr-PPIT
extensions above, we label each encrypted record with a tag based on the corre-
sponding encryption keys. Then client quickly retrieves and decrypts the record
for which it has the decryption key.

As described in Section 4.3, PPIT can be instantiated using any efficient
anonymous IBE scheme. We now describe how to compute key tags using Boneh-
Franklin’s IBE [3], presented in Appendix A. To support multiple records, we
add key tagging, where tags are computed using BF-IBE, as we show in Figure 5.
We assume that two cryptographic hash function H,H ′ are chosen during setup.
Recall that, in BF-IBE, s is the master private key and (P,Q = sP) are public
parameters. We modify the Authorize so that, when the court issues to client an
authorization for ID, client also receives a signature σ′ = s ·H(ID). Note that
PKIBE

i is the IBE private key corresponding to public key IDi and SKIBE is

the IBE private key corresponding to public key ID∗ for which client holds a
court-issued authorization.

C on input: (IDC , σ, σ
′, P,Q) S on input: ({IDi, Di}, {PKIbe

i }, P,Q)
for σ = SKIBE , σ′ = s ·H(ID)

R = zP , for random z ← G1

For every i compute:
Ci = IBE-Encrypt(PKIBE

i , Di)
ti = H ′(e(Q,H(IDi))

z)

Compute t∗ = H ′(e(R, σ′))
〈R,
−→
C,
−→
T 〉oo −→

C = {Ci} and
−→
T = {ti}

If ∃i ∈ {1, ..., n}, s.t. ti = t∗, output
D′ = IBE-Decrypt(SKIBE , Ci)

Fig. 5. IBE-PPIT with multiple records

We emphasize, that re-use of randomness z for each tag in the IBE scheme
is similar to [5]. However, our approach provides multi-encryption (i.e., encryp-
tion of different messages) instead of broadcast encryption [9]. Moreover, we
embed the tags to reduce the number of decryptions to O(1). Proofs appear in
Appendix C.

Multiple Authorizations. We now consider the scenario where client receives
multiple authorizations, allowing access to multiple records with only one in-
stance of PPIT. We say that client stores Σ = {(IDj , σj)|IDj ∈ {0, 1}l}, with
|Σ| = n′, the set of n′ pairs defining a record identifier along with the court’s
authorization. For completeness, we consider server to store the set I of pairs
(IDi, Di) with |I| = n.

As discussed above, server has to send all of its records during the transfer.
RSA-PPIT and Schnorr-PPIT require a different Diffie-Hellman key for each
record. In these interactive instantiations, each key depends on some partial
information of client’s alleged authorization. For this reason, in the RSA-PPIT
transfer protocol client should send µj = σj

2 · grj for every j. In the Schnorr-
PPIT, client should send Xj = gsj · y−ej for every j. This implies that server
should compute and send n′ · n encryptions under n′ · n different Diffie-Hellman
keys, resulting in O(n ·n′) computation time for both entities, as well as O(n ·n′)
bandwidth utilization. Using the tag extensions presented above, the number of
decryptions will be reduced to the linear O(n′).

Specifically, the computation on server is burdened by performing O(n · n′)
exponentiations needed to compute n ·n′ Diffie-Hellman keys. However, in RSA-
PPIT the number of exponentiations can be easily reduced to O(n + n′). In
fact, it is possible to separately compute: (i) n′ different exponentiations for
the received µj , for j = 1, ...n′, (ii) n different exponentiations for HIDi

−2z, for
i = 1, ..., n. Then for each Diffie-Hellman key computation, server should only
perform a multiplication, thus resulting in O(n · n′) total multiplications.

In contrast, the IBE-based extension presented for multiple records can be
applied unaltered to the scenario with client’s multiple authorizations.. There-
fore, the server computation and the bandwidth utilization remains O(n), as
well as the client computation remains linear in the number of authorizations,
i.e. O(n′). This is possible because the transfer protocol in IBE-PPIT is a one-
round interaction and no information is sent from client to server. Hence, the
encryption keys do not depend on any information sent by client.

6 Discussion

We now evaluate and compares the proposed schemes for the case of S with n
records and C with n′ authorizations.

Performance Analysis. Table 1 summarizes the performance of the proposed
PPIT schemes. Both S’s and C’s run-times are measured in terms of public
key operations, ops, i.e., exponentiations in case of RSA-PPIT and Schnorr-
PPIT (exponent sizes are, respectively, 1024 and 160 bits), and bilinear map
operations in case of IBE-PPIT. However, for server operations in RSA-PPIT,
we distinguish between exponentiations, exp, and multiplications mul. Recall
that n is the number of records stored by S, and n′ – the number of authorizations
held by the C.

RSA Schnorr IBE

Transfer Rounds 2 2 1

Server ops O(n+ n′) exp O(n · n′) O(n)
O(n · n′) mul

Client ops O(n′) O(n′) O(n′)

Bandwidth O(n · n′) O(n · n′) O(n)

Table 1. Performance Comparison for scenarios where n′ >> 1.

IBE-PPIT is the most efficient by all counts, since it: (1) takes one round,
(2) requires a linear number of public key operations for both S and C, and
(3) consumes linear amount of bandwidth. Whereas, both Schnorr-PPIT and
RSA-PPIT are two-round protocols. Schnorr-PPIT has quadratic – O(n · n′)
– computation and bandwidth overheads, while RSA-PPIT requires O(n + n′)
exponentiations and O(n · n′) multiplication on S. However, for small n′ values
the Schnorr-PPIT and the RSA-PPIT protocols might be faster because they
use less expensive operations (modular exponentiations versus bilinear maps).

The dominant cost factor varies with the scheme: (1) in RSA-PPIT it is
a 1024-bit exponentiation mod N , (2) in Schnorr-PPIT, it is a 160-bit expo-
nentiation mod 1024-bit prime p, and (3) in IBE-PPIT, it is the bilinear map
function.

Experimental Results. To assess the performance of proposed schemes, we
now present some experimental results. All tests were performed on S with two

quad-core CPUs Intel Xeon at 1.60 GHz with 8GB RAM. All schemes were
implemented in ANSI C, using the well-known OpenSSL toolkit [23], except
pairing operations in IBE-PPIT for which we used the PBC Library [15]. We
used 1024-bit moduli for RSA-PPIT, 1024- and 160-bit primes for Schnorr-PPIT,
and 512-bit group elements and 160-bit primes for IBE-PPIT 3. We note that
all our tests measured total computation time for PPIT transfer, i.e. the sum
of client’s and server’s computation times. We did not measure time for setup
or authorization, since these algorithms are performed only once, at initialization
time. We also note that both client and server were running on the same machine;
thus, measurements do not take into account the transmission time.

Multiple records and one authorization. In the first test, we timed the
performance of the transfer protocol between S storing an increasing number of
records and C holding a single authorization. Figure 6(a) shows that Schnorr-
PPIT is the fastest, while IBE-PPIT is (not surprisingly) the slowest one.

Multiple records and multiple authorizations. In the second test, we ex-
perimented with the case of C holding 100 authorizations and S having an
increasing number of records. Figure 6(b) shows that IBE-PPIT becomes faster
than Schnorr-PPIT, yet, remains slower that RSA-PPIT.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 100 200 300 400 500 600 700 800 900

T
im

e
 (

m
s
)

Records stored by the server

Client holding 1 authorization

IBE
RSA

Schnorr

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100 200 300 400 500 600 700 800 900

T
im

e
 (

m
s
)

Records stored by the server

Client holding 100 authorization

IBE
RSA

Schnorr

(b)

Fig. 6. Total Computation time for PPIT-Transfer for 1 (100) client authorization(s)
and increasing server records

We also timed the case where S has a fixed number of records (100 records)
and C holds an increasing number of authorizations. Figure 7 shows that IBE-
PPIT is clearly faster than RSA-PPIT when C has more than 200 authorizations.

However, note that, in this scenario, transmission time can be a relevant
factor. In IBE-PPIT, this is linear in the number of S’s records. Whereas, in
Schnorr-PPIT and RSA-PPIT, the bandwidth is proportional to the product of
3 Details on the curves we used can be found in PBC library documentation

at http://crypto.stanford.edu/pbc/manual/ch06s01.html and http://crypto.

stanford.edu/pbc/manual/ch10s03.html

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 100 200 300 400 500 600 700 800 900 1000
T

im
e

 (
m

s
)

Authorizations held by the Client

Server storing 100 records

IBE
RSA

Fig. 7. Total Computation time for PPIT-Transfer for increasing client authorizations
and 100 server records

S’s records and C’s authorizations. For instance, if S has 1, 000 records, C holds
100 authorizations, and each record is 1, 000 bits, the bandwidth for RSA-PPIT
and Schnorr-PPIT would be on the order of 100Mb but only 1Mb for IBE-PPIT.

Observation. Experimental results yield several observations:

1. Schnorr- and RSA-PPIT are preferred over IBE-PPIT in settings where C
holds a few authorizations (e.g., Scenario 1 in Section 1.). As shown in Fig-
ure 6(a), IBE-PPIT is much slower than others and the speed gap grows
linearly with the number of records. In particular, Schnorr-PPIT is efficient
enough for quite large databases.

2. IBE-PPIT is preferred for settings where C holds many authorizations (e.g.,
Scenario 2 in Section 1). IBE allows us to avoid interaction, which saves a lot
of computation and bandwidth, especially, if C holds many authorizations.

Unlinkability and Forward Security. We now discuss some differences in
terms of security features provided by the three schemes.

First, note that, unlike RSA-PPIT, Schnorr-PPIT does not offer client-unlinkability,
since the value X = gk sent by C stays fixed for a given ID. IBE-PPIT is trivially
unlinkable.

Whenever multiple transfers take place, forward security becomes important.
We say that a PPIT scheme forward-secure if:

1. Adversary who learns all of S’s data (ID-s and records) cannot violate client-
privacy of prior transfer interactions.

2. Adversary who learns C’s authorization(s) cannot violate security and server-
privacy of past transfer interactions.

Note that the first part of the forward-security requirement is already achieved
through the notion of client-privacy. The second part is not obvious.

RSA-PPIT provides built-in forward security due to the use of gr in com-
puting each µ. Schnorr-PPIT and IBE-PPIT schemes do not provide forward
security, but this can be easily added by requiring both C and S to establish an
ephemeral Diffie-Hellman key [8]. This modification increases the computation
cost by adding an extra exponentiation. In addition, it makes the IBE-PPIT
transfer protocol interactive.

7 Conclusion

This paper introduced a new cryptographic notion of Privacy-preserving Policy-
based Information Transfer (PPIT). We constructed and compared three differ-
ent PPIT instantiations, based, respectively, on: RSA, Schnorr and IBE tech-
niques. We also proposed simple techniques for improving server and/or client
performance for cases where either or both parties have multiple records and
authorizations, respectively. In our future work, we plan to investigate other
solutions to obtain linear complexity using standard digital signatures.

References

1. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-Privacy in Public-Key
Encryption. In Asiacrypt’02, pages 566–582, 2002.

2. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key Encryption
with Keyword Search. In Eurocrypt’04, pages 506–522, 2004.

3. D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing.
SIAM Journal of Computing, 32(3):586–615, 2003.

4. X. Boyen and B. Waters. Anonymous Hierarchical Identity-Based Encryption
(Without Random Oracles). In Crypto’06, pages 290–307, 2006.

5. R. Bradshaw, J. Holt, and K. Seamons. Concealing complex policies with hidden
credentials. In CCS’04, pages 146–157, 2004.

6. C. Castelluccia, S. Jarecki, and G. Tsudik. Secret Handshakes from CA-Oblivious
Encryption. In Asiacrypt’04, pages 293–307, 2004.

7. B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval.
Journal of the ACM (JACM), 45(6):965–981, 1998.

8. W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

9. A. Fiat and M. Naor. Broadcast Encryption. In Crypto’93, pages 480–491, 1993.
10. M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set

intersection. In Eurocrypt’04, pages 1–19, 2004.
11. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in

private information retrieval schemes. In STOC’98, pages 151–160, 1998.
12. C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern match-

ing with security against malicious and covert adversaries. In TCC’08, pages 155–
175, 2008.

13. S. Jarecki and X. Liu. Efficient Oblivious Pseudorandom Function with Applica-
tions to Adaptive OT and Secure Computation of Set Intersection. In TCC, pages
577–594, 2009.

14. N. Li, W. Du, and D. Boneh. Oblivious signature-based envelope. Distributed
Computing, 17(4):293–302, 2005.

15. B. Lynn. PBC: The Pairing-Based Cryptography Library. http://crypto.

stanford.edu/pbc/.
16. M. Naor and B. Pinkas. Oblivious Transfer and Polynomial Evaluation. In

STOC’99, pages 245–254, 1999.
17. S. Nasserian and G. Tsudik. Revisiting oblivious signature-based envelopes. In

Financial Cryptography’06, pages 221–235, 2006.
18. D. Pointcheval and J. Stern. Security proofs for signature schemes. In Eurocrypt’96,

pages 387–398, 1996.

19. R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

20. C. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

21. B. Waters, D. Balfanz, G. Durfee, and D. Smetters. Building an encrypted and
searchable audit log. In NDSS’04), 2004.

22. A. Yao. Protocols for secure computations. In FOCS’82, pages 160–164, 1982.

23. E. Young and T. Hudson. OpenSSL: The Open Source toolkit for SSL/TLS.
http://www.openssl.org.

A Boneh and Franklin’s IBE

We recall that the BF-IBE scheme is composed by four algorithms: setup, extract,
encrypt, decrypt.

Setup, given a security parameter k, is used to generate a prime q, two groups G1,G2

of order q, a bilinear map e : G1×G1 → G2. Then a random s ∈ Z∗q , a random generator
P ∈ G1, P are chosen and Q is set such that Q = sP . (P,Q) are public parameters. s
is the private master key. Finally, two cryptographic hash function, H1 : {0, 1}∗ → G1

and H2 : {0, 1}n → G2 for some n, are chosen.

Extract, given a string ID ∈ {0, 1}∗, is used to compute the corresponding private
key s ·H(ID).

Encrypt is used to encrypt a message M under a public key ID: for a picked random
r ∈ Z∗q the ciphertext is set to be C = 〈rP,M ⊕H2(e(Q,H1(ID)r)〉.

Decrypt is used to decrypt a ciphertext C = 〈U, V 〉, by computing M = V ⊕
H2(e(U, sH(ID)).

B Cryptographic Assumptions

RSA assumption. Let RSASetup(τ) be an algorithm that outputs so-called safe
RSA instances, i.e. pairs (N, e) where N = pq, e is a small prime that satisfies
gcd(e, φ(N)) = 1, and p, q are randomly generated τ -bit primes subject to the con-
straint that p = 2p′ + 1, q = 2q′ + 1 for prime p′, q′, p′ 6= q′. We say that the RSA
problem is (τ, t)-hard on 2τ -bit safe RSA moduli, if for every algorithm A that runs in
time t we have

Pr[(N, e)← RSASetup(τ), α← Z∗N : A(n, e, α) = β s.t. βe = α (mod N)] ≤ τ.

CDH Assumption. Let G be a cyclic group of prime order q with a generator g.
We say that the Computational Diffie-Hellman Problem (CDH) in G is (ε, t)-hard if
for every algorithm A running in time t we have

Pr[x← Zq : A(g, gx, gy) = gxy] ≤ ε.

DDH oracle: A DDH oracle in group G is an algorithm that returns 1 on queries of
the form (g, gx, gy, gz) where z = xy mod q, and 0 on queries of the form (g, gx, gy, gz)
where z 6= xy mod q.

GDH Assumption. We say that the Gap Diffie-Hellman Problem (GDH) in group
G is (ε, t)-hard if for every algorithm A running in time t on access to the DDH oracle
DDHG in group G we have

Pr[x← Zq : ADDHG(g, gx, gy) = gxy] ≤ ε.

C Proofs

Basic RSA-PPIT. RSA-PPIT is secure, private, and client-unlinkable under the RSA
assumption described in Appendix B on safe RSA moduli and the GDH assumption in
the Random Oracle Model, given semantically secure symmetric encryption.

Proof. We first prove the security and server-privacy by demonstrating that no effi-
cient A (acting as a client) has a non-negligible advantage over 1/2 against Ch in the
following game:

1. Ch executes (PK,SK)← Setup(1τ) and gives PK to A.
2. A invokes Authorize on IDj of its choice and obtains the corresponding signature

σj .
3. A generates ID∗0 , ID∗1 and two equal-length data records D0

∗, D1
∗.

4. A participates in transfer as a client with message µ∗.
5. Ch selects one record pair by selecting a random bit b and executes the server’s

part of the transfer protocol on public input PK and private inputs (ID∗b , Db
∗)

with message (R,C).
6. A outputs b′ and wins if b = b′.

Let HQuery be an event that A ever queries H ′ on input K∗, where K∗ is defined
(as the combination of message µ∗ sent by A and message C sent by Ch), as follows:
K∗ = (µ∗)ez · (h∗)−2z mod N , where R = (g)ez and h∗ = H(ID∗). In other words,
HQuery is an event thatA computes (and enters into hash functionH ′) the key-material
K∗ for the challenging protocol.

[Claim 1]. Unless HQuery happens, A’s view of interaction with Ch on bit b = 0 is
indistinguishable from A’s view of the interaction with Ch on bit b = 1.

Since the distribution of R = gez is independent from (IDb, Db), it reveals no
information about which of (IDb, Db) is related in the protocol. Since PPIT uses a
semantically secure symmetric encryption, the distribution with b = 0 is indistinguish-
able from that with b = 1, unless A computes k∗ = H ′(K∗), in the random oracle
model, by querying H ′, i.e., HQuery.

[Claim 2]. If event HQuery happens with non-negligible probability, then A can be used
to violate the RSA assumption.

We describe a reduction algorithm called RCh using a modified challenger algo-
rithm. Given the RSA challenge (N, e, α), RCh sets the public key as (N, e, g) where
g is a generator of QRN . RCh simulates signatures on each IDj by assigning H(IDj)
as σej mod N for some random value σj . In this way RCh can present the certifi-
cate of IDj as σj . RCh embeds α to each H query, by setting H(IDi) = α(ai)

e for
random ai ∈ ZN . Note that given (H(IDi))

d for any IDi the simulator can extract
αd = (H(IDi))

d/ai.
We describe how RCh responds to A in the transfer protocol and how RCh

computes (H(IDi))
d for certain IDi. On A’s input message µ∗, RCh picks a ran-

dom m ← ZN/4, computes R = g(1+em), and sends C and a random encryption

C to A. We remark that g1+em = ge(d+m). On the HQuery event, RCh gets K∗ =
(µ∗)e(d+m)(h∗)−2(d+m) from A. Since RCh knows µ∗, h∗, e, and m, RCh can compute
(h∗)2d. Since gcd(2, e) = 1, computing (h∗)2d leads to computing (h∗)d.

We prove client-privacy and unlinkability. In the following description, we use U ≈S
V to denote that distribution U is statistically close to V in the sense that the difference
between these distributions is at most O(2τ). We show that {h2dgx}x←ZN/4 ≈S QRN .

Take any h ∈ Z∗N and compute σ = hd mod N . (Note that since N − (p′q′) is on the
order of

√
N , which is negligible compared to N , the distribution of h chosen in ZN is

statistically close to uniform in Z∗N .) Since multiplication by h2d is a permutation in
QRN , we have

{h2dgx}x←Zp′q′ ≡ QRN .
Since ZN/4 ≈S Zp′q′ , the above implies that

{h2dgx}x←ZN/4 ≈S QRN .

Since client selects a random value for each protocol instance, it is easy to know that
RSA-PPIT scheme also provides client-unlinkability. �

Basic Schnorr-PPIT. Schnorr-PPIT is secure, private (but not client-unlinkable)
under the GDH assumption (described in Appendix B) in the Random Oracle Model,
given semantically secure symmetric encryption.

Proof. Client-privacy is easy to know since X = gk for random k is independent from
the ID value. We now prove security and server privacy. For the security and privacy,
we use the same game as in RSA-PPIT security and server-privacy, except A sends X∗

instead of µ∗.
Let HQuery be an event that A ever queries H ′ on input K∗, where K∗ is defined

via the combination of the message X∗ sent by A and message R sent by Ch, as follows:
K∗ = (X∗)z · (y)cz mod p, where R = gz and c = H(i,X∗).

[Claim 3]: Unless HQuery happens, A’s view of the interaction with the challenger on
bit b = 0 is indistinguishable from A’s view of the interaction with the challenger on
bit b = 1.

[Claim 4]: If event HQuery happens with non-negligible probability, then A can be used
to break the CDH assumption (described in Appendix B).

We describe a reduction algorithm called RCh using a modified challenger algo-
rithm. The goal of a CDH problem on (p, q, g, y = ga, R = gz) is to compute gaz mod p.
RCh takes (p, q, g, y = ga) as its public key and simulates the signatures (Xj , sj) on
each ID j by taking random sj , ej and computing Xj = gsj ·yej and assigning H(j,Xj)
to ej . Since the verification equation is satisfied and sj , ej are picked at random, this
is indistinguishable from receiving real signatures. In the protocol on A’s input X∗,
RCh responds with R = gz and random encryption C.

Assume that HQuery happens, which can be detected by querying to DDH or-
acle on (g,X∗ · ye, gz, QH) for every query input QH to H. Then, as in the forking
lemma argument of [18], we know that A can be executed twice in a row with the
same value X = gk mod p and different hash values such that (e 6= e′) and A wins

both games with non-negligible probability of at least ε2

qh
, where qH is the number of

queries A makes to the hash function. This means, A can compute with non-negligible
probability the values K = gz(ea+k) mod p and K′ = gz(e

′a+k) mod p with e 6= e′. Con-

sequently, A can also efficiently compute gaz: (K/K′)(e−e
′)−1

= (gzea−ze
′a)(e−e

′)−1
=

(gza(e−e
′
)(e−e

′)−1
= gaz mod p. �

Basic IBE-PPIT. IBE-PPIT is secure, private and client-unlinkable if IBE is seman-
tically secure and key-private under selective ID attack.

Proof. Providing client-privacy and unlinkability is trivial since server does not receive
any information from client in the transfer.

Assuming an underlying IBE system semantically secure under a chosen ciphertext
attack and key-private, the resulting PPIT scheme is trivially secure and server-private
against a malicious client. We prove this claim by contradiction. Assuming our claim
is not true, then there exists a polynomial-bounded adversary A that wins the security
game in Section 2. A is given the PK = “A is authorized to access the record ID”
and the IBE-encryption of DID under the key PK but not the corresponding SK. If
A decrypts DID with non-negligible probability, then we can construct a polynomial-
bounded adversary B which uses A to break the CCA-security of IBE. This contradicts
our assumption.

Finally, server-privacy is trivially achieved if the underlying IBE scheme is key-
private. �

RSA-PPIT Extension. RSA-PPIT extension in Figure 3 is secure, private, and
client-unlinkable under the RSA assumption on safe RSA moduli in the Random Oracle
Model, given semantically secure symmetric encryption.

Proof. The proof for the client-privacy and unlinkability is the same as shown in the
proof for Theorem 1.

We now prove the security and server-privacy. The game for the extended scheme is
the same as for the basic scheme, except the adversary challenges the protocol on two

pairs of input vectors (
−−→
ID∗0 ,

−→
D∗0), (

−−→
ID∗1 ,

−→
D∗1), instead of (ID∗0 , D

∗
0), (ID∗1 , D

∗
1). Namely,

we demonstrate that no efficient A (acting as a client) has a non-negligible advantage
over 1/2 against Ch in the following game:

1. Ch executes (PK,SK)← Setup(1τ) and gives PK to A.

2. A invokes Authorize on IDj of its choice and obtains the corresponding signature
σj .

3. A generates two ID vectors:−−→
ID∗0 = {ID0i}i=1,...,n,

−−→
ID∗1 = {ID1i}i=1,...,n,

and two corresponding record vectors−→
D∗0 = {D0i}i=1,...,n,

−→
D∗1 = {D1i}i=1,...,n.

4. A participates in transfer as a client with message µ∗.

5. Ch selects one record pair by selecting a random bit b and executes the server’s

part of the transfer protocol on public input PK and private inputs (
−−→
ID∗b ,

−→
D∗b)

with message (R,C).

6. A outputs b′ and wins if b = b′.

We define HQuery the same event as in the proof for RSA-PPIT. By the hybrid ar-
gument, if the adversary wins the above game with a non-negligible advantage over

1/2, HQuery happens on at least one pair (ID∗bj , D
∗
bj) out of (

−−→
ID∗b ,

−→
D∗b). Using this

adversary, we can build a reduction algorithm to break the RSA assumption, by the
same argument as described in the proof for Theorem 1. �

Schnorr-PPIT Extension. Schnorr-PPIT extension in Figure 4 is secure, private
(but not client-unlinkable) under the GDH assumption in the Random Oracle Model,
given semantically secure symmetric encryption.

Proof. Again, as in the basic Schnorr-PPIT scheme, client-privacy is easy to know since
X = gk for random k is independent from the ID value.

For the security and privacy, we use the same game used for Schnorr-PPIT security

and server-privacy, except A selects two pairs of vectors (
−−→
ID∗0 ,

−→
D∗0), (

−−→
ID∗1 ,

−→
D∗1), instead

of (ID∗0 , D
∗
0), (ID∗1 , D

∗
1). We define HQuery the same event as in the proof for Schnorr-

PPIT. By the hybrid argument, if the adversary wins the above game with a non-
negligible advantage over 1/2, HQuery happens on at least one pair (ID∗bj , D

∗
bj) out of

(
−−→
ID∗b ,

−→
D∗b). Using this adversary, we can build a reduction algorithm to break the GDH

assumption, by the same argument as described in the proof for Theorem 2. �

IBE-PPIT Extension. IBE-PPIT extension in Figure 5 is secure, private and client-
unlinkable if IBE is semantically secure and key-private under selective ID attack.

Proof. Again, providing client-privacy and unlinkability is trivial since server does not
receive any information from client in the transfer.

Assuming an underlying IBE system semantically secure under a chosen cipher-
text attack, the resulting PPIT scheme is trivially secure and server-private against
malicious C. This claim is true in the case of multiple records. The proof is similar
to that described in Appendix C. Assuming our claim is not true then there exists

a polynomial-bounded adversary A that wins the game on vectors (
−−→
ID∗0 ,

−→
D∗0), (

−−→
ID∗1 ,

−→
D∗1). By the hybrid argument, A decrypts at least one encrypted record out of

−→
D∗b

with b ← {0, 1} without the corresponding secret key. This adversary can be used
to construct an algorithm to break the CCA-security of IBE. This contradicts our
assumption.

Furthermore, we argue that the use of key tags to reduce the number of client’s
decryptions do not affect the security and privacy of the scheme under the assumption
that Boneh and Franklin’s IBE instantiation [3]. Indeed, the key tags are bilinear
maps operations as in BF-IBE. Hence, we claim that if the tags are not secure then
there exists a polynomial-bounded adversary A that breaks the security of BF-IBE,
contradicting our assumption. Finally, the re-use of randomness z (as described in
Figure 5) has been proved to be CPA-secure in [5], thus we skip the entire proof for
space limitation. �

