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Abstract

The ability to share data among different entities can en-
able a number of compelling applications and analytics.
However, useful datasets contain, more often than not, in-
formation of sensitive nature, which can endanger the pri-
vacy of users within the dataset. A possible alternative is
to use machine learning algorithms known as generative
models: these learn the data-generating distribution and al-
low to generate artificial data resembling the data they are
trained on. In other words, entities can train and publish
the model, instead of the original data; however, access to
such model could still allow an adversary to reconstruct
(possibly sensitive) training data.

To overcome these issues, researchers have recently pro-
posed a number of techniques that use carefully crafted
random noise to provide strong privacy guarantees —
specifically, guaranteeing Differential Privacy — so that the
privacy leakage of synthetic data generation can be quan-
tified by rigorous, statistical means. A common approach
in several of the proposed techniques involves training a
generative machine learning model using a differentially
private version of stochatic gradient descent, the so-called
moments accountant method (Abadi et al. 2016).

In this project, we investigate the real-world feasibility
of four recently proposed approaches to private synthetic
data generation. We evaluate such approaches extensively
on different types of data and data analysis tasks. More-
over, we provide an empirical evaluation of the moments
accountant method, highlighting the range of privacy guar-
antees that it yields. Overall, we show that a generic ap-
proach applicable across a wide range of datasets and tasks
might be too much to ask. However, our experiments also
suggest that satisfactory trade-offs between utility an pri-
vacy for private data synthesis are achievable in specific
settings. The most encouraging results correspond to im-
age and financial data as, for good privacy parameters, syn-
thetic training datasets led to 5-8% accuracy loss with re-
spect to training on the non-private original data, for sim-
ple linear models.

1 Introduction

Every day over 2.5 quintillion bytes of data are cre-
ated [22l]; however, the value of this data is maximized
only with the ability to analyze it and provide meaningful
insight from it, ultimately facilitating research and mean-
ingful analytics. In this context, data collection and data
sharing often constitute necessary steps to enable progress
of businesses and society. As a results, entities are often

willing or compelled to provide access to their datasets,
e.g., to enable analysis by third parties.

Alas, data sharing does not come without privacy risks.
The GDPR, recently introduced in the EU, also puts pres-
sure on businesses to be more responsible, more account-
able, and more transparent with respect to personal infor-
mation and privacy laws. In an attempt to mitigate these
risks, several methods have been proposed, e.g., anonymiz-
ing datasets before sharing them. However, as pointed out
on several occasions [6], in practice, anonymization fails
to provide realistic privacy guarantees. Another approach
has been to release aggregate statistics, but this is also vul-
nerable to a number of attacks, e.g., membership inference
(where one could test for the presence of a given individ-
ual’s data in the aggregates) [28]].

More promising attempts come from providing access
to statistics obtained from the data, while adding noise to
the queries’ response, in such a way that “differential pri-
vacy” [15] is guaranteed—we describe differential privacy
in Section |3] However, this approach generally lowers the
utility of the dataset, especially on high dimensional data.
Additionally, by allowing unlimited non-trivial queries on
a dataset can reveal the whole dataset, so this approach
needs to keep track of the privacy budget over time.

Privacy-Preserving Generative Models. An alternative
approach for addressing these issues is to release realistic
synthetic data using privacy-preserving generative models.
Generative models yield new samples that follow the same
probabilistic distribution of a given training dataset. The
intuition is that entities can train and publish the model, but
not the original data, so that anybody can generate a syn-
thetic dataset resembling the data it was trained on. Cru-
cially, the model should be published while also guaran-
teeing differential privacy.

Although these approaches have been evaluated in re-
search papers for certain use cases, we set to investigate
their real-world usability and limitations. Specifically, we
select four models: 1) PrivBayes [33], an e-differentially
private algorithm, which constructs a generative model
based on Bayesian networks, 2) DP-SYN [3] and 3) Priv-
VAE [4]], which use differentially private generative mod-
els relying on the moments accountant [2]], and 4) Syn-
Loc [7l], a seed-based generative model for location data,
building on the concept of plausible deniability.

Overview of the Results

Our experimental evaluation is performed on five datasets,
grouped into four categories: financial data, images, cyber
threat logs, and location data. All the code and data con-



sidered in this report is available in a github repository, and
easily deployable by means of a Docker container, as part
of the project deliverables.

Financial data. We use two datasets from the UCI Ma-
chine Learning repository [12] and evaluate accuracy for
classification tasks on the synthetic data (e.g., classify-
ing individuals as having good/bad credit risks, or income
above/below $50K). We find that PrivBayes performs best
under a high-privacy regime for large datasets, but over-
all synthetic data generated from smaller datasets yields
poor accuracy, even lower than random guessing. Overall,
DP-SYN reaches the highest accuracy, but accuracy does
not improve with less noise. Furthermore, even though the
synthetic data generated by Priv-VAE achieves similar ac-
curacy as DP-SYN, it performs poorly on datasets with im-
balanced classes.

Images. For images, we use the MNIST datasets of hand-
written digits [20], evaluating the performance of digit
recognition, DP-SYN achieves highest accuracy for clas-
sification, and it also seems to generate clearer samples —
from a human evaluation perspective.

Network activity logs. We evaluate the data synthesis on
cyber threat logs obtained from Dshield [1]] and find it to
be the most sensitive to perturbation, to the point that no
model is able to classify or predict threats with better ac-
curacy than random guessing. However, we do not rule out
that a dataset of this nature richer than Dshield could yield
better results.

Location data. Finally, for location data, we use the San
Francisco cabs dataset [20], evaluating performance on a
clustering task, which can be used for detecting areas of
interest for locations. We confirm that the model obtaining
the most similar distribution of clusters to the original data
is Syn-Loc, which specializes on this particular task.

Moments Accountant. Several privacy-preserving gener-
ative models are instantiations of the moments accountant
method [2]]. This technique allows to keep track of the
overall privacy budget throughout a differentially private
stochastic gradient descent optimization. The moments
accountant offers a concrete regime of privacy guarantees
that involves a complex dependency between the param-
eters of the gradient descent procedure, the available pri-
vacy budget, and the size of the input dataset. We provide
a description of the technique and show empirically what
range of privacy guarantees it can provide. Our goal is
to shed light on the relationship between the moments ac-
countant and the synthetic data generation techniques that
rely on it, a point often ommitted in the description of ap-
proaches that use differentially private gradient descent as
a subprocedure.

Report Organization

In Section we review background information on
privacy-preserving data synthesis, then, in Section |3} we
provide an overview of differential privacy, followed by
a discussion on the moments accountant in Section 4} We
then present the models used in our evaluation in Section[5]
while, in Section [6] the testing methodology and the ex-

perimental results results, followed by a discussion in Sec-

tion

2 Privacy-Preserving Data Release

The need to reconcile the need to release data and that to
protect sensitive information has encouraged researchers
to consider different approaches; we review them in this
section.

2.1 Approaches for Privacy and Data
Analysis

Anonymization. In theory, one could try to anonymize
data by stripping personally identifiable information be-
fore sharing it. The assumption is that sharing anonymized
records can be done freely, since no one knows who the
respective record belongs to. In practice, however, this as-
sumption has been disproven on multiple occasions, for
numerous datasets. Archie et al. [6] re-identify users from
the Netflix Prize dataset by using publicly available IMDb
data. This is an even bigger problem for more sensitive
data, such as genomes, where re-identification of users
has also been proven to be possible. Gymrek et al. [16]]
demonstrate that recovery of surnames from genomic data
donors can be inferred using data publicly available from
recreational genealogy databases. Additionally, not even
k-anonymity, where generalization techniques are used to
mask exact values of attributes, are safe against inference
attacks [\5]].

Aggregation. Another approach is to share aggregate
statistics about a dataset. For example, one can the num-
ber of people in a certain location at a given time in or-
der to determine if the location is considered a point of
interest [27]]. However, this is also ineffective, due to sus-
ceptibility to membership inference attacks. For instance,
Pyrgelis et al. [28] show how to determine whether a user is
part of aggregate location data. Membership inference at-
tacks have also been demonstrated in other contexts, e.g.,
genomic data [[19}[32]].

Differentially Private Data Release. In order to provide
stronger privacy guarantees, techniques that satisfy differ-
ential privacy have been more widely proposed as more
effective solutions. Differential privacy, reviewed in Sec-
tion[3] provides a formal mathematical definition that spec-
ifies requirements for controlling privacy risk, with sev-
eral properties (e.g., composition, post-processing, etc.)
that facilitate reasoning about privacy and the construc-
tion of differentially private algorithms. However, the ten-
sion between usability and privacy is inherently complex
and application-dependent, and differentially privacy algo-
rithms have often been regarded as providing low utility
for researchers, as, e.g., in the case of health data [11].

Privacy-Preserving Synthetic Data Generation. To
overcome these limitations, another approach is to gener-
ate realistic synthetic data using generative models. These
yield new samples that follow the same probabilistic distri-
bution of a given training dataset. The intuition is that enti-
ties can train and publish the model, in a differentially pri-



vate way, so that anybody can generate a synthetic dataset
resembling the data it was trained on, without exposing the
training data itself.

Imputation models. One of the first approaches for gener-
ating fully synthetic data has been proposed by Rubin [29]].
The idea is to treat all observations from the sampling
frame as missing data and to input them using the multi-
ple imputation method. Because the synthetic data has no
functional link to the original data, it can preserve the con-
fidentiality of participants. However, as discussed in [10]],
the synthetic data generated this way is subject to infer-
ential disclosure risk when the model used to generate the
data is too accurate.

Statistical models. Other approaches attempt to generate
a statistical model based on the original data [33]]. The
main idea is to generate a low-dimensional distribution of
the original data to help with the data generation process.
This approach, combined with differential privacy, aims to
provide privacy guarantees to the synthetic data.

Generative Models. More recently, generative machine
learning models have attracted a lot of attention from the
research community. A generative model is a way to learn
any kind of data distribution using unsupervised learning,
aiming to generate new samples that follow the same prob-
abilistic distribution of a given dataset. Generative models
based on neural networks work by optimizing the weights
of the connections between neurons by back-propagation
techniques. For complex networks, the optimization is
usually done by the mini-batch stochastic gradient descent
(SGD) algorithm. Generative models can be used in con-
junction with differential privacy. This is usually done us-
ing a differentially private training procedure, which guar-
antees that the learned model is differentially private, and
thus any synthetic dataset we can derive from it will also
guarantee differential privacy.

We also look at seed-based generative models [[7], which
condition the output of the model based on input data,
called the seed. This way, the model will produce syn-
thetic records similar to the seed, which can increase the
quality of the output. Because of the high correlation be-
tween the output and the seed, privacy tests which provide
differential privacy guarantees are introduced.

3 Differential Privacy

In this section, we discuss Differential Privacy (DP) as well
as the Moments Accountant method presented in [2] in the
context of privacy-preserving deep learning. Readers fa-
miliar with these concepts can skip this section without
loss of continuity.

3.1 Definitions and Properties

DP addresses the paradox of learning nothing about an in-
dividual while learning useful information about a popu-
lation [15]. Generally speaking, differential privacy aims
to provide rigorous, statistical guarantees against what an
adversary can infer from learning the result of some ran-
domized algorithm. Typically, differentially private tech-
niques protect the privacy of individual data subjects by

adding random noise when producing statistics. In a nut-
shell, differential privacy guarantees that an individual will
be exposed to the same privacy risk whether or not her data
is included in a differentially private analysis.

Definition. Formally, for two non-negative numbers ¢, 9, a
randomized algorithm A satisfies (¢, §)-differential privacy
if and only if, for any neighboring datasets D and D’ (i.e.
differing at most one record), and for the possible output
S C Range(A), the following formula holds:

Pr[A(D) € S] < e Pr[A(D’) € S|+ 6

The ¢, 6 parameters. Differential privacy analyses allow
for some information leakage specific to individual data
subjects, controlled by the privacy parameter e. This mea-
sures the effect on each individual’s information on the out-
put of the analysis. With smaller values of ¢, the dataset
is considered to have stronger privacy, but less accuracy,
thus reducing its utility. An intuitive description of the pri-
vacy parameter, along with supporting examples, is avail-
able in [24].

If § = 0, we say that the mechanism is e-differentially
private. This is considered to be the absolute case, in which
one cannot gain more than a small amount of probabilistic
information about a single individual. By contrast, § > 0
allows for a small probability of failure, e.g., an output can
occur with probability § > 0 if an individual is present in
the dataset, and never happens otherwise.

As per [15], the values of § are usually computed as an
inverse function of a polynomial in the size of the dataset.
In particular, any values of § on the order of IT%\’ where
|D| represents the size of the dataset D, are considered
to be very dangerous: even though this case is “privacy-
preserving,” it would still allow the publication of com-
plete records for a small number of participants. In order
to better understand why values of § of the order of ITl?I can
be dangerous, consider an algorithm that simply releases
an entry of the dataset | D| uniformly at random. This al-
gorithm is €, §, with e = co and § = ﬁ, and yet obviously
does not provide a meaningful privacy guarantee.

Post-Processing. Differential privacy is “immune” to
post-processing, i.e., any function applied to the output of a
differentially private algorithm cannot provide less privacy
guarantees than the original mechanism. More formally,
let A be a randomized algorithm that is (¢, §)-differentially
private, and f be an arbitrary mapping. Then, f o A is also
(e, §)-differentially private.

Composition. One of the most important properties of
differential privacy is its robustness under composition.
When combining multiple differentially private mecha-
nisms, composition theorems can be used to account for
the total differential privacy of the system. More pre-
cisely, for mechanisms My, ... M,,, where each M; is
a (€;,0;)- differentially private algorithm, we have that
M (@) = Ma(@),... My(2)) is i1, €, 2052 &)-
diffentially private.

Strong Composition. Dinur and Nissim [13]] and Dwork
and Nissim [[14]] showed that, under k-fold adaptive com-
position on a single database, the privacy parameter dete-
riorates less if a negligible loss in § can be tolerated. This
yields the Strong Composition Theorem:



For every € > 0, §,6’ > 0 and k € N, the class of
(e, §)-differentially private mechanisms is (¢/,ké + 0')-
differentially private under k-fold adaptive composition,

for
= \/len%-e—&—kfeo,

where ¢g = e — 1. This theorem introduces a stronger
bound on the expected privacy loss due to multiple mech-
anisms, which relaxes the worst-case result given from the
composition theorem.

Sensitivity. The notion of the sensitivity of a function
is very useful in the design of differentially private al-
gorithms, and define the notion of sensitivity of a func-
tion with respect to a neighboring relationship. Given a
query F' on a dataset D, the sensitivity is used to adjust
the amount of noise required for F'(D). More formally, if
F' is a function that maps a dataset (in matrix form) into
a fixed-size vector of real numbers, we can define the L;-
sensitivity of F’ as:

i

Si(F) = max [|[F(D) — F(D')

where || - ||; denotes the L; norm, ¢ € {1,2} and D and D’
are any two neighboring datasets.

The Gaussian Mechanism. One of the most widely used
methods to achieve (e, d)-differential privacy is to add
Gaussian noise to the result of a query. Given a function
F: D — Roveradataset D, if o = S2(F')+/21n(2/0)/e,
and N(0,0?) are independent and identically distributed
Gaussian random variables, the mechanism M provides
(e, 0)-differential privacy when:

M(D) = f(D) +N(0,0?)

More specifically, the Gaussian Mechanism with parame-
ter o adds noise scaled to N(0, 0%) to each of the compo-
nents of the output.

Differentially Private Data Generation. As discussed
earlier, the main focus of our work is differentially pri-
vate synthetic data generation. The main idea is that, once
the data is generated, it can be used for multiple analy-
ses, without the need to further increase the privacy bud-
get. This is a consequence of the postprocessing property
of differential privacy mentioned above. Incidentally, the
National Institute of Standards and Technology (NIST) has
recently launched a differential privacy synthetic data chal-
lenge [31], aiming to find synthetic data generation algo-
rithms that protect individual privacy but provide a high
utility of the overall dataset.

3.2 Moments Accountant

In [2], Abadi et al. show how to bound the privacy loss
of gradient descent-like computations. They present a
privacy-preserving stochastic gradient descent (SGD) al-
gorithm for training a model with parameters 6 by mini-
mizing the loss function £(6); see Algorithm 1}

At each step of the algorithm, the gradient is computed
for a small subset of examples (Line @, then the L, norm
of each gradient is clipped (Line [/ in order to bound the
influence of each individual example. Noise is then added

Algorithm 1 Differentially Private SGD

1: Input: Examples {z1,...,zn}, loss function £(0 =
43", L(0,x;). Parameters: learning rate 7;, noise
scale o, group size L, gradient norm bound C, number
of steps 7.

2: Initialize 6y randomly

3: fort=1toT —1do

Take a random sample L, with sampling probabil-
: _ L
ity g = ~
for eachi € L; do
gt(x;) = Vo, L(Or, 1)

7 Gi(w;) = ——220)

RIEACHIIY

Gi = (3 7e(x:) + N(0,0%C?1))

: 0111 = 0 — 0 .
return 67 and compute the overall privacy cost (¢, )

using a privacy accounting method.

to the clipped gradient (Line [§) and a step is taken in the
opposite direction of the average noisy gradient. When
outputting the model (Line [9), the total privacy loss needs
to be computed, using a privacy accounting method. The
composition property of differential privacy allows to com-
putes the privacy cost at each access to the training data,
accumulating the cost over all training steps. An initial
bound is given by the strong composition theorem, how-
ever, [2l] provides a stronger accounting method, namely

the moments accountant, which saves a factor % in the

asymptotic bound.

Formal Description. Next, we provide a formal descrip-
tion of the main technical aspects of the moments accoun-
tant technique, mirroring the presentation in the original
paper [2]. For proofs and details we reader to the supple-
mentary material of [2].

For any neighboring databases D, D’, a mechanism M,
an auxiliary input aux and a outcome o, the privacy loss at
o is defined as:

c(o; M,auzx, D, D’") = log %

For a given mechanism M, the A moment

apm (A M, auzx, D, D’) is defined as:
apm(A\ M, auz,D,D") =
log Eo p(auz, 0y [exp(Ac(0; M, auz, D, D'))]

In order to provide the guarantees of the mechanism, all
possible ax(A; M, aux, D, D’) should be bounded, so
apr(A) is defined as:

apm(A) = maxguq,p,p opm (X M, auz, D, D),

where the maximum is taken over all possible auz and all
neighboring datasets D and D’.
Then, « achieves the following properties:

o Composability: ~ Suppose that a mechanism M
consists of a sequence of adaptive mechanisms
My ... M. Then, for any \:

am(N) < Sy an, (V).



Algorithm 2 Epsilon Computation

1: Input g, o, §, number of epochs ep, number of orders A
2: Initialize | = —00, Qist, €15t = O

3: fori =2to A+ 1do

4: forj =2to1+ 1do

5: l = log(5ry + - log g+ (i — j) log (1 — q)
6: s =1+ (5° = j)/(s0?)

7: if [ is —oo then

8: l=s

9: else:

10: I =log(e'os(=9)) 4 s

11: a=1l-ep-q

12: Append « to st

13: 1 =2

14: for each « in «y;4; do:

15: Append (o —1og(6))/(i — 1) to €1
16: 1=1+1

17: € = min(egst)

18: return e

Thus, in order to bound the mechanism overall, we
need to bound each apq, (A\) and sum them.

e Tail Bound: For any € > 0, the mechanism M is
(€, 0)-differentially private for

0 = miny exp(a(A) — Ae)

The tail bound converts the moments bound to the
(e, §)-differential privacy guarantee and gives us a
way to compute €, given a fixed 0 as:

¢ = miny M

Assuming that the training is done over multiple epochs,
we can fix the sampling ratio ¢ = %, where N is the num-
ber of data points in the dataset, and L is the number of
datapoints within a lot. Then, for a Gaussian Mechanism
with random sampling, it suffices to compute the probabil-
ity density function for (0, 0%) and N'(1, 02), denoted as
1o and 4 respectively. If = (1 — q)po + g1, we have
a(N) = logmax(E;, Es), where:

4 A Discussion of the the Moments
Accountant Method

In Section [3.2] we have defined the moments accountant
method proposed in [2]]. Here, we discuss and study its
effect on the privacy budget, aiming to provide a better
understanding of how all variables used in the moment ac-
countant influence the overall privacy budget of the dataset.

The steps for computing the value of €, given 4, the sam-
pling ratio g, the noise multiplier o, the number of epochs
ep, and the number of orders for the moment accountant A
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Figure 1: The minimum value of ¢, calculated by the moments
accountant, for different dataset sizes, with § = ﬁ, where n
is the dataset size, for 20 training epochs, with sampling ratio
q = 0.01.

are shown in Algorithm 2] We evaluate the effect of differ-
ent parameters on the minimum value of ¢, by varying the
value of one of the parameters, and keeping all the others
fixed, for different dataset sizes. For each of the cases, we
also illustrate the values of 32 individual moments, simi-
lar to the analysis done in [2]. Please note that Abadi et
al.’s original analysis aimed to find the best possible (e, )
for each of the datasets tested when testing accuracy on
different datasets, whereas, we aim to provide a better un-
derstanding of the privacy budget limitations when using
this method for different dataset sizes.

Effect of the noise multiplier. We begin by evaluating the
moments accountant with respect to o, the noise multiplier.
We set the value of § = ﬁ, where n represents the size
of the different datasets tested, the sampling ratio ¢ = 0.01
and evaluate over 20 training epochs. From Figure[I] we
observe that with ¢ = 2, the minimum required value for
the privacy budget is outside the so-called privacy regime
(e < 1) even for the smallest dataset tested (n = 500).
However, when looking at higher values of o we can ob-
serve that the minimum value for the privacy budget de-
creases up to the case o = 20, after which the epsilon
values remain close to each other, even for high values for
sigma (o = 107). Figure [2|illustrates the corresponding
value for the moments «.. The correlation between the val-
ues of o and the minimum values for € is remarkable, as
« quickly increases for o = 2, and for higher values of o
there is little to no variation between the values of .

Effect of 5. We then evaluate the effect of § on the over-
all privacy budget. Recall from Section [3.1] that § allows
for a small probability of failure in the differential privacy
definition, i.e. with a probability of § a certain output of
a query might be given if an individual in present in the
dataset. As each individual record in the dataset has this
probability of failure, this will happen, on average J - n
times. Hence ¢ - n needs to be small, as to not let any
users at risk, J needs to be chosen based on the size of the
dataset.

Given that € is computed as a function of § in the mo-
ments accountant, the privacy budget is highly dependent
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Figure 3: The minimum value of ¢, calculated by the moments
accountant, for different dataset sizes, where n is the dataset size,

for 20 training epochs, with the sampling ratio ¢ = 0.01, and the
noise multiplier o = 20.

on the size of the dataset. In this setting, we evaluate 20
training epochs, with a noise multiplier o = 20 and a sam-
pling ratio ¢ = 0.01. From Figure [3] we observe that the
minimum value for € increases with lower values for . We
also illustrate the corresponding values of the moments,
«, corresponding to the minimum values of € over 32 mo-
ments in Figure f] These values are independent of the
dataset size, hence independent from §.

Effect of Number of Epochs. We also studied the effect
of the number of epochs on the privacy budget. However,
even though there is a small variation on the privacy budget
for different number of epochs, the effect of this parameter
is not as prominent as the other parameters presented in
this section.

Effect of Sampling Ratio. Finally, we look at the effects
of different sampling ratios (q) on the overall privacy bud-
get. In Figure |5} we keep the § parameter fixed at ﬁ,
the noise multiplier o = 20, and plot the minimum value
of € when varying the sampling ratio g. Here we see the
increase in the minimum value of epsilon is also correlated

with an increase in the sampling ratio g. The value of the
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Figure 4: The values of the moments accountant caq, (), for
the minimum values of e, with a noise multiplier 0 = 20 and
sampling ratio ¢ = 0.01.
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Figure 5: The minimum value of ¢, calculated by the moments
accountant, for different dataset sizes, with § = —~—, where n

10xn’
is the dataset size, for 20 training epochs, with noise multiplier

o = 20.

sampling ratio also affects the value of the moments ac-
countant, as clear from Figure [§] For a small sampling
ratio (i.e. ¢ = 0.01 to ¢ = 0.1), we find that the values
of the moments « are close to 0, however, with increasing
batch size, these values increase quickly, making the min-
imum value of the privacy parameter € close to 1 even for
small dataset sizes (n < 103).

Remarks. Overall, our analysis shows that differential pri-
vacy is not a purely “out-of-the-box” tool, but a complex
process to satisfy a definition where different parameters
affects the overall privacy budget. Therefore, before ap-
plying differential privacy to a dataset, one has to be aware
the trade-offs between parameters in practice as well as the
needs of the system with respect to privacy.
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5 State-of-the-Art Approaches for
Privacy-Preserving Data Synthesis

In this section, we describe the state-of-the-art approaches
for privacy-preserving data synthesis, which we evaluate
later in Section[6l

5.1 PrivBayes

PrivBayes [33] is a solution for releasing a high-
dimensional dataset D in an e-differentially private man-
ner. It involves three phrases:

1. A k-degree Bayesian network N is built over the
attributes in D using an S-differentially private
method (k is a small value, chosen automatically by
PrivBayes).

2. An 5-differentially private algorithm is used to gen-
erate a set of conditional distributions of D, such that
for each attribute-parent (AP) pair (X, II) in A/, we
have a noisy version of the conditional distribution

3. The Bayesian network A and the d noisy conditional
distributions are used to derive an approximate distri-
bution to generate a synthetic dataset D*.

The model is first constructed in a non-private manner, us-
ing standard notions from information theory to construct
the k-degree Bayesian network A/ on a dataset D, contain-
ing a set of A attributes. The mutual information between
two variable is denoted as :

UCHIVESEDY
z€dom(X) medom(II)
I Pr[X =z Il=n]
7]logs Pr[X =] Pr[li=7]"

Pr[X =z, 11 =

where Pr[X,II] is the joint distribution of X and IT and
Pr[X] and Pr[II] are the marginal distributions of X and
IT.

The proposed non-private algorithm “GreedyBayes” —
see Algorithm 3] extends the Chow and Liu algorithm [9]

Algorithm 3 Greedy Bayes

1: Initialize N = @ and V = ()
2: Randomly select an attribute X; from A; add (X;, )
toN;add X;to V
for:=2toddo

Initialize Q = 0

for each X € A\ V andeachIT € (}) do

Q=Qu (X,10)

Select a pair (X, I1;) from Q with maximal mu-

tual information I (X, IT;)

8: Add Xl,Hz) tON; add X; toV
return

R

for higher values of k. The Bayesian network is built by
greedingly picking the next edge based on the maximum
mutual information. First, the network A is initialized to
an empty set of AP pairs. The set of attributes whose par-
ents were fixed in the previous step (V') is also initialized
to an empty set. Then an attribute is randomly chosen, and
its parent is set to the empty set. The AP pair obtained is
added to NV and the attribute to V. For all the next d — 1
steps, an AP pair is added to A/ based on the mutual infor-
mation, i.e. the edge which maximizes I is selected. Each
AP-pair is chosen such that i) the size of the parent set is
less than or equal to k and 73) A contains no edge from the
attribute at the current step to any of the attributes added at
previous steps.

However, both I and the best edge are data sensitive, so
GreedyBayes is adapted to be differentially private. Each
AP pair (X, II) € Q is inspected and the mutual informa-
tion between X and IT is calculated. After that, an AP pair
is sampled from 2 such that the sampling probability of
any pair (X, II) is proportional to exp( I(g(A’H) ), where A
is the scaling factor. In order for the Bayesian network to
satisfy §-differential privacy, A is set to

2(d—1)S(I
AL 2d= DS
€
where S1 (1) denotes the L; sensitivity of . For the mutual
information I, we have:

S1(1(X,10)) =
{}L logon + "Tfl log, 7, if X or Il is binary

2 n+1 n—1 n+1
n 10g2 5 + o 10g2 —

o, otherwise

However, since S(I) > logT?", the range of S can be quite
large compared to the range of /. Hence, the authors pro-
pose the use of a novel function F' that maps each AP pair
(X, II) to a score, such that ¢) F’s sensitivity is small (with
respect to the range of F'). and 47) if F'(X,II) is large then
I(X,1I) tends to be large.

In order to define F', first the maximum joint distribu-
tion is defined. Given an AP pair (X, II), a maximum joint
distribution Pr®[ X, IT] for X and II is one that maximizes
the mutual information between X and II. In other words,
if [dom(X)| < |dom(IT)|, Pr®[ X, I1] is a maximum joint
distribution if and only if i) Pr®[X = z] = \doTl(X)l for
all z € X, and ¢7) for all 7 € dom(II), there is at most one
z € dom(X) with Pr[X = z,II = 7] > 0.



Let (X, II) be an AP pair and P°[X,II] be the set of all
maximum joint distributions for X and II. Then F' is de-
fined as:

F(X,II)=1 pmin || Pr[X, 1] — Pré[X, I1]||,
reepe

The function F' defined this way has a smaller sensitivity
than I, namely S(F) = 1. In order to give a computation
of F', let (X, II) be an AP pair and |II| = k. Then, the joint
distribution Pr[X,II] can be represented as a 2 x 2* ma-
trix, where all elements sum up to 1. In order to identify
the minimum L, distance between Pr[X,II] and a max-
imum joint distribution Pr®[X, II],the distributions in P°
are partitioned into a number of equivalence classes and
then F'(X,II) is computed by processing each equivalence
class individually.

In a nutshell, PrivBayes is an e-differentially private
method for high dimensional data using a Bayesian Net-
work. The network is used to model the distribution be-
tween the attributes of the data. The distribution of the data
is approximated using low dimensional marginals and then
noise is added to satisfy differential privacy. Finally, the
samples are drawn from the differentially private data for
release. One of the considered drawbacks of this approach
is the addition of too much noise during the network con-
struction, which might make the approximation of the data
distribution inaccurate.

The implementation for this method is available from
https://github.com/JiaMingLin/privbayes.

5.2 Approaches based on Generative Models
and the Moments Accountant

5.2.1 Priv-VAE

In [4]], Acs et al. present a technique for privately releas-
ing generative models so that they can be used to generate
an arbitrary number of synthetic datasets. It relies on gen-
erative neural networks to model the data distribution on
various kinds of data, such as images or transit informa-
tion. As the training procedure is differentially private with
respect to the training data, any information derived from
the generative models is also differentially private (by the
post-processing property of differential privacy), including
any dataset produced from them.

More concretely, the non-private version of the proposal
works as follows: the dataset is partitioned into k clusters
B\l, 5\2, ceey B\k which are used to train £ distinct genera-
tive models, where the parameters of the resulting models
are denoted 61, . .., 0. The data samples within a cluster
are similar. 64, ..., 0 are learned using gradient descent.
The generative models are then released, so that they can
be used by third parties to generate synthetic data.

Note that both the clustering step and the training of
the generative models inspect the data, and thus should be
made differentially private. The clustering is performed us-
ing a differentially private kernel k-means algorithm which
first transforms the data into a low-dimensional represen-
tation using the randomized Fourier feature map and the
standard differentially private k-means is applied on these

low dimensional features. To select the number of clus-
ters k , Acs et al. rely on dimensionality reduction al-
gorithms (e.g. t-SNE [21]]). Then, to training a gener-
ative model for each cluster, they use the differentially
private gradient descent procedure from Algorithm |1} In
particular, authors experiment with Restricted Boltzmann
Machines (RBMs) and Variational Autoencoders (VAEs).
They evaluate the clustering accuracy of their algorithm on
the MNIST dataset (for which thy use £ = 10) and their
model on both a Call Data Records and a transit dataset,
showing that the average relative error of their model out-
performs MWEM [17].

Finally, note that the implementation of this approach is
available upon request from the authors of [4].

5.2.2 DP-SYN

Abay et al. [3] present a framework combining private con-
volutional neural network with the private version of the
iterative expectation maximization algorithm Dp-Em [25].
The dataset is first partitioned according to every instance’s
label, and then an (§, g)—differentially private autoencoder
is built for each label group. The private latent represen-
tation is then injected into an (£, g)-differentially private
expectation maximization function (Dp-Em [25])). The Dp-
Em function detects different latent patterns in the encoded
data and generates output data with similar patterns, which
is then decoded to obtain the synthetic data.

DP-SYN uses a different approach to partitioning as op-
posed to Priv-VAE. The former partitions the data accord-
ing to each of the label and the model is then trained on
the labeled partitions, while the latter does so randomly,
and uses differentially private k-means clustering for clus-
tering the data samples.

The authors include an extensive experimental evalua-
tion on nine datasets for binary classification tasks, com-
paring their results with four state-of-the-art techniques,
including PrivBayes [33] and Priv-VAE [4]. All the ex-
periments are run for 10 rounds, and only the best results
for each algorithm are being recorded.

DP-SYN’s implementation was originally available
from https://github.com/ncabay/synthetic_generation, but
as of March 2019 it is no longer so.

5.3 Synthesis of Location Traces (Syn-Loc)

Finally, we look at the work by Bindschaedler and
Shokri [7]], which aims to generate fake, yet semantically
plausible privacy-preserving location traces.

5.3.1 Plausible Deniabilty

Bindschaedler et al. [8]] formalize the concept of plausi-
ble deniability in the context of data synthesis, as a new
privacy notion for releasing privacy-preserving datasets.
More precisely, it is presented as a formal privacy guar-
antee such that an adversary (with no access to back-
ground knowledge) cannot deduce that a particular data-
point within a dataset was “more responsible” for a syn-
thetic output than a collection of other datapoints.
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More formally, plausible deniability is defined as fol-
lows. For any dataset D, with |D| > k, and any record
y generated by a probabilistic generative models M such
that y = M (d;) for d; € D, we state that y is releaseable
with (k, v) -plausible deniability if there exist at least k — 1
distinct records da, . .., dy, € D\ {d;} such that:

1 _ Prly=M(d,)]
7 < Pr[‘l?!,/:iw <7,

foranyi,j € {1,2,...k}.

In short, a synthetic record provides plausible deniabil-
ity if the that synthetic data record could have been gener-
ated by a number of real data points.

Plausible deniability has been shown to satisfy differ-
ential privacy guarantees if randomness is added to the
threshold k. In fact, the authors show that if Laplacian
Noise Lap(%) is added to k, then, their system satis-
fies (e,0) differential privacy, with ¢ = €y + log T and
§ = e~colk=8) for any integer ¢, with 1 < ¢ < k. One of
the main differences between plausible deniability and dif-
ferential privacy for generative models is the lack of noise
added to the generated data.

5.3.2 The Data Synthesis Algorithm

The paper first introduces two mobility metrics that capture
how realistic a synthetic location trace is with respect to ge-
ographical semantic dimensions of human mobility. Then
it constructs a probabilistic generative model that produces
synthetic, yet plausible traces. It is built using a dataset of
real locations used as seeds, referred to as the seed dataset.
For each set in the seed dataset, a probabilistic mobility
model is computed representing the visiting probability of
each location and the transition probability between loca-
tions.

Generating the synthetic traces starts by transforming a
real trace (taken as seed) to a semantic trace. The equiva-
lent of semantic classes is created using the k-means clus-
tering algorithm, where the number of clusters is chosen
such that it optimizes the clustering objective. The seed is
then converted to a semantic seed by replacing each loca-
tion in the trace with all its semantically equivalent loca-
tions. Then, some randomness is injected into the seman-
tic seed. Any random walk on the semantic seed trace that
travels through the available locations at each time instant
is a valid location trace that is semantically similar to the
seed trace. Then, the semantic trace is decoded into a ge-
ographic trace in order to generate traces that are plausible
according to aggregate mobility models. To generate mul-
tiple traces for each seed, the Viterbi algorithm with added
randomness to the trace reconstruction is used.

Each of the generated traces is tested to ensure statistical
dissimilarity and plausible deniability. Statistical dissimi-
larity ensures a maximum bounds on both the similarity
between a fake trace and the seed from which it was gener-
ated, and between the intersection of all fake traces gener-
ated from a specific seed. Plausible deniability means that,
for any fake trace generated from a seeds, there are at least
a number of alternative seeds that could have generated it.

The most notable difference between this model and the
other models presented in this section is that it is a seed-

based model, where it takes a data record as a seed and gen-
erates synthetic data from that data record. In contrast, the
other models model the synthetic data based on the prop-
erties of the original data.

The protocol was evaluated on the Nokia Lausanne
Dataset [26], containing a combination of GPS coordi-
nates, WLAN and GSM identifiers for users, with the loca-
tion being reported every 20 minutes. The implementation
of the protocol is available from https://vbinds.ch/node/70.

6 Experimental Evaluation

6.1 Datasets & Tasks

We use several datasets for our experimental evaluation,
which we group into 4 categories. For each of the datasets,
we also consider different tasks, following common exper-
iments used in literature.

1. Financial data. We use two of the datasets from the
UCI Machine Learning Datasets [[12]], namely: i) the
German Credit dataset, with anonymized information
of 1,000 customers, having 20 features and classify-
ing customers as having good or bad credit risk; and
ii) the Adult dataset, with information from 45,222
individuals, extracted from the 1994 US census, with
15 features, indicating whether the income of an indi-
vidual exceeds 50,000 US dollars.

2. Images. We use the MNIST dataset [20], a public
image dataset, which includes 28 x 28-pixel images of
handwritten digits, containing 70,000 samples. The
main classification task usually performed on this data
set is dataset is to correctly classify the handwritten
digit in the image.

3. Cyber threat logs. We rely on the DShield [1] data
collected over 10 days, with approximately 5M en-
tries collected each day. Each entry contains the Id,
date, source IP, source port, target port, target IP of
an attack, whenever an alert has been sounded by the
firewall. This dataset has been often used in the con-
text of predictive blacklisting [30], i.e., forecasting
which IPs will attack a target.

4. Location data. We use the San Francisco cabs
dataset [26]], containing mobility traces recorded by
San Francisco taxis. This has often been used to
predict next locations, identifying points of interests,
etc. [28].

6.2 Experimental Setup and Objectives

We aim to evaluate the performance of the synthetic
datasets for different tasks to give a concrete overview of
their usability in practice. Different datasets have differ-
ent statistical requirements, hence we aim to provide an
extensive analysis to cover multiple basis. For each of
the datasets, we test multiple values for €, while keeping
¢ fixed at 10% allowing us to analyze the quality of the
synthetic data under different levels of noise.
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Classification tasks. We evaluate the synthetic data by
training a discriminative model on it and evaluate its accu-
racy for classification on real test data. This should high-
light whether the quality of the original data is preserved
when using synthetic data. For this task, we compare our
results to two baselines: 1) the original data, i.e., we eval-
uate how well the discriminative model performs when
trained on the synthetic data as opposed to being trained
on the original dataset; and 2) a model that would ran-
domly assign a prediction based on the original distribu-
tions of the data. Any of the models that report an accu-
racy lower than this baseline are considered unsuitable for
any classification task. In our evaluation, we will refer to
the former as “Original Data’ and to the latter as “Lower
Baseline.” We use this methodology to evaluate the finan-
cial data dataset and the cyber threats logs, using an SVM
classifier.

Linear regression. We also use the synthetic data gen-
erated by each of the models and train a linear regression
model on them. We evaluate the resulting model on a real
testing data, vis-a-vis the accuracy of the predictions made.
Similar to the classification tasks, we use the “Lower Base-
line” and “Original Data” as baselines. We do this for the
image and the German Credit dataset.

Prediction. Inspired by the work of Melis et al. [23] in
the context of collaborative predictive blacklisting, we aim
to analyze the performance of synthetic data in forecast-
ing future attack sources for the cyber threat logs dataset.
We use Melis et al.’s implementation from https://github.
com/mex2meou/collsec.git to evaluate the synthetic data
obtained from each of the models under their k-nearest
neighbors approach. We evaluate the performance of the
synthetic data by looking at the true positive rate for pre-
dicting future attacks.

Clustering. For location data, we evaluate if the synthetic
data preserves the properties of the original data, specifi-
cally, extracting the points of interest and comparing the
results to the points of interest from the original dataset.

By comparison, the NIST challenge has similar criteria:
the submitted algorithms must be able to preserve the bal-
ance of utility and privacy for regression, classification and
clustering, but also for evaluation when the research ques-
tion is unknown.

6.3 Financial Data

German Credit. In order to evaluate the categorical at-
tributes of the German Credit dataset, we use the numeric
encoding provided in [12]]. We split the dataset into 70%
training data and 30% testing data.

First, we train an SVM model on both synthetic data
generated by each of the algorithms and on the original
data, and report the accuracy results of the classification in
Figure[/] The accuracy of the models improves with less
noise added to the model (i.e. higher values for €), and,
among the tested models, DP-SYN obtains the highest ac-
curacy. Priv-VAE has accuracy close to DP-SYN, however,
when constructing the confusion matrices for Priv-VAE,
we see that it fails to classify the German Credit dataset
even in less noisy settings, and classifies most datapoints
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within one class (in this case it classifies most customers
as having bad credit score). For ¢ < 0.5, the synthetic
data obtained from PrivBayes reports less accuracy than
our lower baseline.

In Figure [/| we also report a setting for ¢ = oo. This
illustrates the models’ accuracy with very little or no pri-
vacy. If the models generate synthetic data under this set-
ting, the accuracy given is close to the accuracy of the
SVM model trained on the original data.

Second, we tested a logistic regression model on the
dataset, and observed the accuracy. From Figure (8| we
see that this model fails to correctly classify even the orig-
inal data. For the synthetic data, in fact, it reports a better
accuracy than the SVM model, however, when looking at
the confusion matrices, we notice that it fails to classify
the dataset, reporting most datapoints as being within one
class.

Adult Dataset. We first encode the adult dataset, us-
ing One-Hot Encoding [18], to convert the categorical at-
tributes of the dataset into numerical attributes. The encod-
ing obtained has 57 attributes as opposed to 13 attributes in
the original dataset. We split the dataset into 70% training
data and 30% testing data.

We train an SVM model on the synthetic data obtained
from each of the models and present the results in Fig-
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ure[9] Note that PrivBayes has better accuracy with higher
noise levels than DP-SYN (e < 1). Additionally, when
€ is greater than 2, the accuracy of DP-SYN decreases,
which is perhaps counter-intuitive, as it is expected for ac-
curacy to increase when less noise is added to the model.
Priv-VAE fails to cluster the data in this test case, often re-
turning empty clusters during the differentially private k-
means clustering. The accuracy of Priv-VAE, even though
higher than the lower baseline used, is lower than the ac-
curacy of the other two tested models for all tested values
of e.

To observe if an increase in accuracy can be correlated
with with increasing dataset size, we also train the SVM
model on partial data, while keeping the same test dataset.
In Figure[T0] we plot the accuracy for e = 0.9 for DP-SYN
(the minimum accepted value of € for this dataset, when
§ = 13-), and e = 0.8 for PrivBayes. Even though in this
case PrivBayes has more noise added to the model, it re-
ports better accuracy than DP-SYN, for all partial datasets
tested. The increase in accuracy for PrivBayes with larger
dataset sizes is easily observed, from approximately 0.75
accuracy when 10% of the original data was used for gen-
erating the synthetic data to approximately 0.8 when 90%
of the data was used. For DP-SYN, the same correlation
cannot be observed, and in fact, the highest accuracy (0.75)
is reported when 80% of the data was used for training.

In Figure|11} we increase the value of € to 1.2. We can
observe that PrivBayes reports better accuracy when less
than 40% of the original data was used for generating the
synthetic data, and DP-SYN outperforms PrivBayes with
increasing dataset size. In contrast to Figure[I0] in this case
we observe an improvement in accuracy for both models
with increasing dataset sizes.

In Figure [I2] we report the accuracy for increasing
dataset sizes for € = 3.2. In this case DP-SYN outperforms
PrivBayes, however, neither of the models’ improvement
in accuracy can be correlated with increasing dataset sizes.

6.4 Images

We then evaluate the models on the MNIST dataset. We
use the the usual split for training and testing purposes, i.e.
60,000 samples for training and 10,000 samples for testing.
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Figure 11: SVM accuracy results for training models at a per-
centage of the original datasets, with ¢ = 1.2.

We generate synthetic data with all three methods and then
construct a linear regression model on the synthetic data
for evaluating the accuracy of each of the models.

For each value of € tested we reconstruct the average
image resulted in every class. When reconstructing the
classes for PrivBayes, we can observe that the model did
not correctly reconstruct separate class images.. As shown
in Figure@ all the classes seem similar, even in the low-
est privacy case (i.e. ¢ = 107). Therefore, we split the data
into separate classes and trained on each class separately
for generating the synthetic data.

In Figure [T4] after splitting, with increasing values of
epsilon, we start to distinguish between different classes.
For DP-SYN (see Figure @), the reconstruction of each
of the digit classes is much clear even for small €, and
close to the average class reconstruction for the original
data. Priv-VAE (see[I6) outputs a less noisier reconstruc-
tion than PrivBayes, but not as clear as DP-SYN. Finally,
in Figure[[7] we report the accuracy of the linear regression
models. As expected from the reconstructed samples, the
accuracy of PrivBayes is very low for the noisier samples.
In fact, not even for the less noisy cases, when accuracy im-
proves, it does not match the accuracy of the linear regres-
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Figure 13: Average class reconstruction for PrivBayes, with no
splitting before training.

sion model when trained on the original data. Similarly,
the accuracy of the synthetic samples generated from Priv-
VAE is correlated with the average class reconstruction,
and in fact generates has a better accuracy than PrivBayes
as the value of € increases. DP-SYN obtains a higher ac-
curacy then both the other two models, however, it still
reports lower accuracy that that of the original dataset.

6.5 Cyber Threat Logs

First, we try a classification task for this dataset. We con-
struct the dataset for this task by using the DShield logs
and classifing the existing logs as threats, and adding as
much non-threat traffic to the dataset. After randomizing,
we split the data into 70% training and 30% testing. We
train a discriminative model on the synthetic data for all
models, however, none of them achieved an accuracy bet-
ter than the lower baseline.

Our second approach is to use this data set as both train-
ing and testing, using a 5 day sliding window for training
the models and obtaining synthetic data, and we use the
real data from the next date for testing. The aim of this is
for a model trained on the synthetic data to generate new
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Figure 15: Average class reconstruction for DP-SYN.

samples that could then be used to predict data found in the
testing dataset.

When using the synthetic dataset obtained from
PrivBayes to evaluate prediction using the k-NN approach
from [23]], it failed to produce any samples that would cor-
relate with the testing data. Hence, we no meaningful pre-
dictions can be obtained on this synthetic dataset, regard-
less of noise level. DP-SYN managed to predict some of
the future attacks, however, it reported a lower true posi-
tive rate (less than 50% true positive rate) than the original
data. Even for this dataset, DP-SYN does not perform con-
sistently better with less noise added to the model.

6.6 Location Data

We generate the synthetic datasets for each of the mod-
els and plot the distribution of locations (Figure [I8] DP-
SYN fails to provide a meaningful distribution of loca-
tions, placing all locations on the same point on the map.
The synthetic data generated by PrivBayes, even though
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Figure 17: Linear Regression accuracy results for MNIST

Dataset with § fixed at 15—, for varying values of €.

more scattered on the map than DP-SYN, still fails to
mimic the distribution of the original data.The synthetic
data generated by Syn-Loc has a more similar distribution
across the map to the original data. This is due to the more
specialized model used for data generation.

We cluster the data using k-means clustering for extract-
ing the points of interest on the map. We plot the clus-
ters distribution on the map for £ = 10 in Figure As
expected, the synthetic data generated from DP-SYN is
grouped within a single cluster. The synthetic data from
PrivBayes does not generate empty clusters, but the distri-
bution of clusters on the map does not resemble the distri-
bution of clusters for the original dataset. The data gen-
erated by Syn-Loc provides the most similar clustering to
the original dataset. In Figure 20| We plot the distribution
of clusters for £ = 20. In this case, not only the data from
DP-SYN is grouped within one cluster, but clustering on
the synthetic data from PrivBayes also return empty clus-
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Figure 19: 10 Clusters of locations for the San Francisco Cabs
dataset.

ters. Again, Syn-Loc provides the most similar clustering
to the original dataset.

7 Discussion

The main goal of our project was to understand how to
evaluate privacy-friendly synthetic data generation tech-
niques. In other words, we set to determine whether or not
it is possible to privately synthesize data characteristics to
yield translational findings to the original data. In short,
the answer to this question depends on the task at hand,
the size of the dataset, as well as the privacy requirements
of the synthetic dataset.

Our analysis also showed that one of the most important
notions to be thoroughly understood before attempting to
generate differentially private synthetic datasets is the mo-
ments accountant [2]]. This represents a complex account-
ing method for keeping track of the privacy budget where
each parameter can have a great influence on the quality of
the synthetic data.

We evaluated three of the privacy-preserving syn-
thetic data generation models on binary classification
tasks on two financial data datasets. The first model,
PrivBayes [33]], reported accuracy lower than randomly as-



—116 A

v v PrivBayes
@ Original Data
Syn-Loc
—118 A m DP-SYN
8 -120
2
=)
<
S v
_lzz'vvvv"vvv v d
+ v
-124 °
v

42.5 45.0 47.5 50.0

Latitude

35.0 37.5 40.0

Figure 20: 20 Clusters of locations for the San Francisco Cabs
dataset.

signing labels based on original distributions of the data
when trained on noisy synthetic data (i.e., ¢ < 0.5) for
the German Credit dataset. However, when the same task
is performed on a larger dataset, accuracy is better even
for noisier synthetic datasets. Moreover, even on smaller
samples of the adult dataset, the performance is still bet-
ter than the lower baseline and reports better accuracy
than the other models for noisier datasets. By contrast,
DP-SYN yields better performance overall on the German
Credit dataset, but lower accuracy on the larger dataset for
noisy synthetic data (e < 1). In fact, the average perfor-
mance actually decreases for some of the less noisy syn-
thetic datasets (¢ > 2). Priv-VAE generates synthetic data
which even though reports testing accuracy comparable to
DP-SYN, but, from closer inspection, it classifies most dat-
apoints within one label.

The same models were then evaluated on the MNIST
dataset, on a multi-class classification task. For this
dataset, the synthetic data obtained from PrivBayes per-
forms poorly when evaluated for classification tasks. In
fact, even from the synthetic data reconstruction of the av-
erage sample image for each class, it is easy to observe that
the resulting images have a significant amount of noise.
Moreover, we found that splitting the data into separate
classes before training the model is necessary in order to
be able to distinguish between the different classes. The
synthetic data from DP-SYN returns better reconstructed
samples, however, the minimum privacy budget for this
dataset is ¢ = 0.9 for § = 10% therefore not allowing
too much noise to be added to the model.

For the cyber threat logs, none of the models tested per-
formed well under the two tested tasks. The discriminative
models trained on the synthetic datasets for classifying dat-
apoints as threats or as benign all reports a lower accuracy
than the lower baseline. Even for the prediction task, none
of the models achieve a meaningful true positive rate for
predicting future attacks. We think this is due to the fact
that the attack vectors given, based on IP and port, are quite
sensitive to noise perturbations, and therefore noisy data
can be unsuitable for such tasks.

For location data, the model that returns the distribution
most similar to the original data is Syn-Loc. This is an
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expected outcome, because of the more specialized model
used in this model. DP-SYN fails to generate meaningful
synthetic data, generating all synthetic data points within
one location point. We believe that the performance of this
model is worse on the location dataset compared to the
other datasets, because the model used to split the train-
ing data by class and generate synthetic samples for each
class separately, whereas the same split is not possible in
this case. PrivBayes managed to generate synthetic sam-
ples with a better distribution than DP-SYN, however not
as good as Syn-Loc.

In conclusion, our experimental evaluation suggests that
a generic approach which would successfully be able to
generate universally meaningful synthetic datasets might
not be viable. This is due to the complexity and varied
nature of the datasets used in the wild. It remains for
the data provider to decide if the offset in utility asso-
ciated with privacy-preserving synthetic data satisfies its
needs. Overall, there is no “best” model among the ones
we tested, as they all exhibit different performances on dif-
ferent datasets. From our evaluation, we can conclude that
DP-SYN can be used for image reconstructions, providing
that the training can be done in classes, as it constructed
the images in the MNIST dataset close to the original sam-
ples. PrivBayes provides high accuracy for binary classifi-
cation tasks on large datasets, when a large noise perturba-
tion is needed. Syn-Loc manages to simulate real location
data distributions better than the other models due to its
focus on location datasets. However, privacy-preserving
synthetic data, even though not perfect, offers a better alter-
native then anonymization techniques which fail to provide
useful privacy guarantees, or differential privacy which can
greatly affect the utility of the data.

Overall, the most encouraging results correspond to im-
age and financial data that, as for settings with good pri-
vacy guarantees — where the value of the epsilon and delta
parameters of differential privacy are less than 1, and an
order of magnitude smaller than the inverse of the size of
the dataset, respectively — the evaluated approaches led to
synthetic training datasets on which very basic models for
prediction and classification incurred a 5-8 accuracy loss
with respect to training on the non-private original data.

These results are encouraging, and leave open several
venues for further work that could potentially lead to bet-
ter trade-offs between privacy and utility, as one can (i)
consider synthesis procedures that are more specialized to
concrete types of data, (ii) evaluation under more powerful
domain-specific models, and (iii) consider large datasets,
which is a realistic consideration given that the datasets we
covered in our evaluation are of moderate size.
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