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Modern society is increasingly dependent on (and fearful of) massive amounts and avail-

ability of electronic information. There are numerous everyday scenarios where sensitive data must

be — sometimes reluctantly or suspiciously — shared between entities without mutual trust. This

prompts the need for mechanisms to enable limited (privacy-preserving) information sharing. A

typical scenario involves two parties: one seeks information from the other, that is either motivated,

or compelled, to share only the requested information. We define this problem as privacy-preserving

sharing of sensitive information and are confronted with two main technical challenges: (1) how to

enable this type of sharing such that parties learn no information beyond what they are entitled to,

and (2) how to do so efficiently, in real-world practical terms.

This dissertation presents a set of efficient and provably secure cryptographic protocols

for privacy-preserving sharing of sensitive information. In particular, Private Set Intersection (PSI)

techniques are appealing whenever two parties wish to compute the intersection of their respective

sets of items without revealing to each other any other information (beyond set sizes). We moti-

vate the need for PSI techniques with various features and illustrate several concrete variants that

offer significantly higher efficiency than prior work. Then, we introduce the concepts of Authorized

Private Set Intersection (APSI) and Size-Hiding Private Set Intersection (SHI-PSI). The former en-

sures that each set element is authorized (signed) by some mutually trusted authority and prevents

xvi



arbitrary input manipulation. The latter hides the size of the set held by one of the two entities, thus,

applying to scenarios where both set contents and set size represent sensitive information.

Finally, we investigate the usage of proposed protocols in the context of a few practical

applications. We build a toolkit for sharing of sensitive information, that enables (practical) privacy-

preserving database querying. Furthermore, motivated by the fast-growing proliferation of personal

wireless computing devices and associated privacy issues, we design a set of collaborative applica-

tions involving several participants willing to share information in order to cooperatively perform

operations without endangering their privacy.
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Chapter 1

Introduction

In this chapter, we introduce the general concept of sensitive information sharing and mo-

tivate our work on privacy. We also summarize major contributions and present disserta-

tion’s outline.

1.1 Sharing Sensitive Information with Privacy

The notion of privacy is commonly described as the ability of an individual or a group

to seclude information about themselves, and thereby reveal it selectively. In many nations, laws

or constitutions protect privacy as a fundamental individual right [3, 9, 4]. The availability of in-

formation about an individual may result in having power over that individual, hence, generating

concerns on potential misuse by governments, corporations, or other individuals [67].

In recent years, advances in computer and communication technologies have significantly

amplified privacy risks. Nowadays, data is routinely exchanged electronically and collected by

third parties. Privacy concerns are no longer limited to the anonymity and untraceability of digital

activities. The disclosure of private information yields an increasing number of legal, monetary,

practical, or even emotional, privacy issues.

However, the need for controlled (privacy-preserving) sharing of sensitive information

occurs in many realistic scenarios, ranging from national security to individual privacy protection.

A typical setting involves two parties: one that seeks information from the other that is either moti-

vated, or compelled, to share (only) the requested information.

Consequently, in numerous occasions, there is a tension between information sharing and
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privacy. On the one hand, sensitive data needs to be kept confidential; on the other hand, data owners

may be willing, or forced, to share information. We consider the following examples:

• Aviation Safety: The U.S. Department of Homeland Security (DHS) needs to check whether

any passengers on any flight to/from the United States must be denied boarding or disem-

barkation, based on several secret lists, e.g., the Terror Watch List (TWL) [58]. Today, air-

lines submit their passenger manifests to the DHS, along with a large amount of sensitive

information, including credit card numbers [143]. Besides its obvious privacy implications,

this modus operandi poses liability issues with regard to mostly innocent passengers’ data

and concerns about possible data loss. (See [33] for a litany of recent incidents where large

amounts of sensitive data were lost or mishandled by government agencies.) Ideally, the DHS

would obtain information pertaining only to passengers on one of its watch-lists, without

disclosing any information to the airlines.

• Healthcare: A health insurance company needs to retrieve information about a client from

other insurance carriers or hospitals. Clearly, the latter cannot provide any information on

other patients while the former cannot disclose the identity of the target client.

• Law Enforcement: An investigative agency (e.g., the FBI) needs to obtain electronic infor-

mation about a suspect from another agency (e.g., the local police, the military, the DMV, the

IRS) or from the suspect’s employer. In many cases, it is dangerous (or forbidden) for the FBI

to disclose the subject of its investigation. Whereas, the other party cannot disclose its entire

dataset and trust the FBI to only extract desired information. Furthermore, FBI’s requests

might need to be pre-authorized by some appropriate authority (e.g., a federal judge issuing a

warrant). This way, the FBI can only obtain information related to authorized requests.

• Social Networking: A social network user (Alice) wants to find out whether there are any

other users nearby with whom she shares friends or group memberships, without relying on

a third-party. Some of this information might be very sensitive, e.g., it might reveal Alice’s

medical issues or sexual orientation. Today, Alice would have to broadcast her information

in order to discover a nearby “match”, thus compromising her privacy. Whereas, Alice might

be willing to disclose sensitive information only to users with a matching profile.

• Interest Sharing: Two or more users would like to share their common interests and activities,

e.g., to discover matching locations, routes, preferences, or availabilities, without exposing

any other information beyond the matching interests.
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These examples motivate the need for privacy-preserving sharing of sensitive information

and pose two main technical challenges: (1) how to enable this type of sharing such that parties

learn no information beyond what they are entitled to, and (2) how to do so efficiently, in real-world

practical terms.

1.2 Cryptographic Protocols and Open Problems

Technology advances have radically influenced our modes of communication and have

equally prompted a number of privacy challenges. As a result, there has recently been a lot of re-

search activities in the context of Privacy-Enhancing Technologies (PETs).1 Modern Cryptography

has played a key role within PETs, producing a number of effective cryptographic protocols for

privacy protection.2

Below, we overview cryptographic protocols enabling implicit authentication and oblivi-

ous information transfer. We discuss their inter-dependence and highlight some open problems that

have motivated our work.

1.2.1 Protocols for Implicit Authentication and Oblivious Information Transfer

Many cryptographic protocols can be defined as the secure and privacy-preserving imple-

mentation of a desired functionality [77]. They involve two or more players, each equipped with a

private input, willing to compute the value of a public functionality f over their inputs. In doing so,

they only learn the output of f and nothing else besides what can be deduced from the output. In

other words, if protocol parties were to trust each other (or some outside party), then they could each

send their local input to the trusted party, that would execute f and send each party the correspond-

ing output. The main technical challenge is to let such a trusted party be “emulated” by mutually

distrustful parties themselves. This paradigm is referred to as Secure Multi-party Computation

(SMC) [148, 79]. SMC has been thoroughly investigated starting with Yao’s garbled circuits [148],

used to privately compute any function that can be expressed as a boolean circuit. For more details

on SMC, we refer to [79, 121, 32, 113, 86].

Our work is focused on enabling privacy-preserving sharing of sensitive information. Its

objective is the secure computation of specific functionalities, using specialized protocols, rather
1For a historical overview of Privacy-Enhanced Technologies, we refer readers to [76, 75, 60, 1, 36, 82].
2We argue that Modern Cryptography entails several different building blocks, including basic cryptographic primi-

tives (e.g., digital signatures, encryption schemes, etc.) and more complex cryptographic protocols. As this dissertation
focuses on the latter, we refer readers to [77, 104, 118] for an extensive background on all topics of Modern Cryptography.
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than generic solutions. Our motivation is two-fold: (1) not all information sharing functionalities

can be easily implemented using generic solutions (such as garbled circuits), and (2) it is often more

efficient to design optimized special-purpose protocols.

The research community has proposed a number of interesting cryptographic protocols,

that address a wide range of problems simultaneously encompassing security, privacy, authentica-

tion, and authorization. Based on prior results, we concentrate on two important directions: implicit

authentication and oblivious information transfer.

Implicit Authentication

Traditional access control systems involve a client requesting access to a resource from

a server. Client needs to demonstrate ownership of credentials to satisfy server’s access control

policies. Each party may choose to withhold more sensitive credentials until an adequate level of

trust has been established through the exchange of less sensitive credentials. Nonetheless, ultimately

one party must be the first to reveal its credential to the other party [90].

However, in several realistic scenarios, one might be willing to encrypt a resource such

that the client gains access to it using its credentials, without revealing them to the server. To enable

this type of functionality, several related cryptographic protocols have been proposed, including

Oblivious Signature Based Envelopes [111, 127], Hidden Credentials [23], Anonymous Creden-

tials [24, 28], and Secret Handshakes [8, 96, 35, 147, 99]. We review them in Section 3.1.

Oblivious Information Transfer

In many applications, entities request information from other parties, e.g., to retrieve mes-

sages, files, or database records. In many realistic scenarios, however, desired information is sen-

sitive. Consider, for instance, a company querying a patent database server to verify the novelty of

its product: the company may fear that the database server sells its recent queries to competitors.

One trivial way to guarantee query privacy is to download the entire database and perform searches

locally. However, this would introduce a significant bandwidth overhead; also, the server may be

unwilling to release a copy of its entire database.

Several cryptographic protocols have been proposed to address this problem. The most

prominent technique is Oblivious Transfer [136], that allows a sender to transfer one of potentially

many messages to a receiver, remaining oblivious about the message transferred (if any). Other

related concepts are Private Information Retrieval (PIR) [40, 74, 39, 131, 11] and Private Set Inter-
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section (PSI) [66, 108, 87, 44, 85, 98, 100]. We discuss them in detail in Section 3.2.

In particular, we anticipate that PSI techniques constitute a fundamental part of this dis-

sertation: they serve as the main building block to enable privacy-preserving sharing of sensitive

information. PSI involves two parties, a server and a client, each with a private input set. PSI

lets parties run a cryptographic protocol that only disclose to the client the set intersection, and

nothing to the server (beyond client set size). Several PSI constructions have been proposed, with

different complexities, tools, assumptions, and adversarial models. Prior work on PSI is extensively

discussed in Section 3.3.

1.2.2 Some Open Problems

In recent years, there has been an increased interest in cryptographic protocols for implicit

authentication and oblivious information transfer. Nonetheless, much remains to be done. Below,

we identify and discuss several relevant open problems in the field, that we attempt to address in

this dissertation.

Combining Oblivious Information Transfer and Implicit Authorization

Sensitive information is often requested by some authority based on some legitimate need.

The challenge is how to allow access to only duly authorized information and, at the same time, to

obtain needed information without divulging what is being requested. In other words, we need

to enable mechanisms to obliviously transfer information on top of protocols that allow implicit

authentication of interacting parties. In fact, one feature common to protocols for implicit authen-

tication is the use of credentials that certify that a user is a member of a certain group. These are

then (obliviously) used for authentication, to establish a secret, or to grant access to some resource.

However, one open problem is how to adapt these concepts to settings where credentials are related

to the information the client requests and is authorized on, rather than to a group membership. For

instance, an FBI agent may be authorized to access a suspect’s electronic file from an employer,

given that the agent holds a valid warrant, issued by a court explicitly for that suspect. In doing so,

the employer might need to remain oblivious to whether the requestor is a member of any specific

organization, or whether it holds any credential at all.

To this end, our first research contribution – presented in Chapter 4 – introduces the con-

cept of Privacy-preserving Policy-based Information Transfer (PPIT), geared for any scenario with

a need to transfer information between parties that: (1) are willing and/or obligated to transfer
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information in an accountable and policy-guided (authorized) manner, (2) need to ensure privacy

of data owner by preventing unauthorized access, and (3) need to ensure privacy of requester’s

authorization(s) that grant it access to the data. We highlight and address some issues that arise

in adapting protocols for implicit authentication (specifically, Hidden Credentials and Oblivious

Signature-Based Envelopes) to the PPIT setting.

Arbitrary Inputs in Private Set Intersection

In the context of PSI, one important open problem is how to prevent malicious parties

from altering their input sets. In PSI, the client learns the set intersection while the server learns

nothing. In some setting, this may represent a severe threat to server’s privacy. For instance, a

malicious client may populate its input set with its best guesses of the server set (especially, if the

set is easy to exhaustively enumerate). This would maximize the amount of information it learns.

In the extreme case, the client could even claim that its set contain all possible items. Although the

server could impose a limit on this size, the client could still vary its set over multiple protocol runs.

We argue that this issue cannot be effectively addressed without some mechanism to au-

thorize client inputs. For this reason, we introduce the concept of Authorized Private Set Intersection

(APSI) (in Chapters 5 and 6), where an off-line certification authority authorizes client input sets.

We show that APSI and PPIT concepts are related and attempt to bridge the gap between

oblivious information transfer and implicit authorization.

Practicality of Available Private Set Intersection Protocols

Despite previously proposed PSI constructs, the quest for their efficiency is still underway.

One open problem is how to design PSI protocols that involve a number of cryptographic operations

(such as modular exponentiations), linear in the size of input sets. Prior results, e.g., [85, 98],

asymptotically achieve this bound, however, their practicality is limited by the high cost of basic

underlying operations. Also, we advocate the availability of PSI protocols that do not impose any

expensive cryptographic operations on client side, thus, facilitating application scenarios where

clients operate from limited-resource devices.

To this end, we design and implement a set of PSI constructions that improve the effi-

ciency of state-of-the-art (Chapters 5 and 6). A thorough experimental analysis, in Appendix A,

empirically confirms our improvements.
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Hiding Input Sizes

One common feature of all protocols for oblivious information transfer, including PSI, is

that client input size is always revealed to the server. This also applies to generic secure two-party

computation techniques, such as Yao’s garbled circuits [148]. However, in many scenarios, input

size represents sensitive information, including the case of the Terror Watch List discussed above.

Therefore, an interesting open problem in the context of PSI is how to keep client set size secret. In

Chapter 7, we introduce the concept of Size-Hiding Private Set Intersection (SHI-PSI).

1.3 Practical Aspects of Privacy-Preserving Sharing of Sensitive In-

formation

Another challenge is how to build and deploy efficient mechanisms for sharing sensitive

information with privacy. One possible concern is related to the computational and communication

overhead introduced by cryptographic protocols for privacy protection. In addition, one needs to

consider real-world application scenarios, thus, designing flexible and usable techniques.

To this end, we design and implement a Toolkit for Privacy-preserving Sharing of Sensi-

tive Information (in Chapter 8). We consider realistic database-querying applications involving two

parties: a server, in possession of a database, and a client, performing disjunctive equality queries.

In doing so, the client does not disclose to the server its query, while the server is ensured that

the client only obtains records matching the query. Although our main building blocks are PSI

techniques, we address several interesting challenges, stemming from adapting PSI techniques to

database settings. For instance, while in PSI set items are assumed to be unique, most databases

contain duplicate values (e.g., “sex=female”).

Next, we turn to the mobile environment (in Chapter 9): we design collaborative applica-

tions involving participants—with limited reciprocal trust—willing to share sensitive information

from their smartphones, and use it to (cooperatively) perform operations without endangering their

privacy. We focus on two application scenarios: (i) privacy-preserving interest sharing, i.e., discov-

ering shared interests without leaking users’ private information, and (ii) private scheduling, i.e.,

privately determining common availabilities and location preferences that minimize associate costs.
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1.4 Summary of Contributions

This dissertation investigates the design of efficient and provably secure mechanisms for

privacy-preserving sharing of sensitive information.

1. We explore the relationship between cryptographic protocols for oblivious information trans-

fer and implicit authentication. We motivate the need for efficient cryptographic protocols

that: (1) allow access to only duly authorized information, and (2) release needed informa-

tion without divulging what is being requested.

2. We focus on Private Set Intersection (PSI) techniques as our main building block. First,

we aim at designing limited-overhead PSI constructions that are significantly more efficient

than state-of-the art. Our protocols involve fast cryptographic operations linear in the size

of input sets. Next, we introduce and instantiate Authorized Private Set Intersection (APSI),

a PSI variant that prevents parties from arbitrarily manipulating their inputs. Finally, we

motivate the need for Size-Hiding Private Set Intersection (SHI-PSI) and present the first PSI

construction that hides the size of one party’s input set.

3. We build an efficient and ready-to-use toolkit for privacy-preserving sharing of sensitive in-

formation, in the database context. As part of the toolkit design we address several challenges

stemming from adapting PSI to database settings.

4. We present a novel architecture geared for privacy-sensitive smartphone applications where

personal information is shared among smartphone users and decisions are made based on

given optimization criteria.

1.5 Organization

This dissertation is organized as follows.

• Chapter 2 provides background information on notation, computational assumptions, adver-

sarial models, and cryptographic tools.

• Chapter 3 discusses relevant related work in the context of privacy-preserving cryptographic

protocols.
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• Chapter 4 motivates and introduces the concept of Privacy-preserving Policy-based Infor-

mation Transfer (PPIT). It formalizes PPIT functionality (alongside its security model) and

presents three efficient instantiations.

• Chapter 5 constructs several PSI protocols, secure in the presence of semi-honest adversaries,

that are significantly more efficient than state-of-the-art. We introduce the concept of APSI

and show how some PPIT instantiations can be (inefficiently) adapted to APSI. We then pro-

pose a more practical APSI protocol and derive efficient PSI from it. Finally, we introduce

an even more efficient PSI protocol geared for scenarios where the server performs some

pre-computation and/or the client has limited computational resources.

• Chapter 6 proposes PSI protocols, that are secure in the presence of malicious adversaries,

under standard assumptions. It proposes a linear-complexity APSI protocol in the malicious

model – the first of its kind. Finally, it presents a (plain) PSI construction that is significantly

more efficient than state-of-the-art.

• Chapter 7 introduces the concept of Size-Hiding in PSI, where the size of the set held by one

party is hidden from the other.

• Chapter 8 presents the design and implementation of a toolkit for privacy-preserving sharing

of sensitive information that uses efficient PSI protocols as its main building block.

• Chapter 9 investigates privacy-preserving techniques geared for mobile applications where

sensitive information is shared between smartphone users.

• Chapter 10 concludes the dissertation and discusses outstanding research issues.

1.6 Collaboration

Most of the material in this thesis has been published in a preliminary form in conferences,

workshops, and journals, co-authored with several researchers. Specifically, work presented in

Chapter 4 has been done in collaboration with Stanislaw Jarecki and Jihye Kim [47], in Chapter 6

with Jihye Kim [48], and in Chapter 7 with Giuseppe Ateniese [5]. Also, Yanbin Lu collaborated

on the results presented in Chapter 8 [49], while Anthony Durussel and Imad Aad – to work in

Chapter 9 [46].
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Foundations of Privacy-Preserving

Sharing of Sensitive Information
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Chapter 2

Preliminaries

In this chapter, we provide background information on notation, relevant computational

assumptions, adversarial models, and cryptographic tools.

2.1 Notation

Negligible Function. A function f(τ) is negligible in the security parameter τ if, for every

polynomial p, it holds that f(τ) < 1/|p(t)|, for large enough t.

Signatures. Throughout this dissertation, we use public-key signature schemes, where each

scheme is a tuple of algorithms DSIG = (KGen,Sign,Vrfy), representing key setup, signature gen-

eration and verification, respectively. Specifically, KGen(τ) returns a public/private key-pair, on in-

put a security parameter τ . Signsk(m) returns a signature σ on message m. Whereas, Vrfypk(σ,m)

returns 1 or 0 indicating that σ is valid or invalid signature on m, under pk.

Symmetric-Key Encryption. We also employ semantically secure symmetric encryption.1 We

assume the key space to be τ1-bit strings, where τ1 is a (polynomial) function of a security parameter

τ . We use Enck(·) and Deck(·) to denote symmetric-key encryption and decryption (both under key

k), respectively.
1For a cryptosystem to be semantically secure, it must be infeasible for a computationally bounded adversary to derive

significant information about a message (plaintext) when given only its ciphertext. For a formal definition of semantic
security, refer to [104].
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Random Values. We use a←r A to designate that variable a is chosen uniformly at random from

set A.

2.2 Cryptosystems

Schnorr Signatures [139]. Let p be a large prime and q be a large prime factor of p − 1. Let

g be an element of order q in Z∗p, M be the message space and H1 : M → Z∗q be a suitable

cryptographic hash function. The signer’s secret key is: a ←r Z∗q and the corresponding public

key is: y = ga mod p. The values: p, q and y are public, while a is only known to the signer. A

signature σ = (e, s) on input message M is computed as follows:

1. Select a random value k ∈ Z∗q .

2. Compute e = H1(M, gk mod p).

3. Compute s = ae+ k mod q.

A Schnorr signature (e, s) on message M , is verified by checking that H1(M, gs, y−e mod p)

matches e.

Paillier Cryptosystem [133]. Given a number n = pq (where p and q are two large prime

numbers), we define z as a n-th residue modulo n2 if there exists a number y ∈ Z∗n2 s.t. z = yn

mod n2. The problem of deciding if z is a n-th residue is believed to be computationally hard,

under so-called Decisional Composite Residuosity Assumption (CDRA). The Paillier cryptosystem

involves the following algorithms:

• Key generation: Select n = pq where p and q are two random large prime numbers. Pick a

random generator g ∈ Z∗n2 s.t. µ = (L(gλ mod n2))−1 mod n exists, given that

λ = lcm(p − 1, q − 1) and L(x) = (x−1)
n . The public key is (n,g) and the private key is

(λ,µ).

• Encryption: To encrypt a message m ∈ Zn, select a random r ∈ Z∗n and compute the

ciphertext: Er(m)
def
= gm · rn mod n2. Note that ciphertexts are elements of Zn2 .

• Decryption: Given a ciphertext c ∈ Zn2 , decrypt as: L(cλ mod n2) · µ mod n, where

L(x) = (x−1)
n .
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The Paillier cryptosystem is additively homomorphic, i.e.,, given Er1(m1) = (g)m1 · (r1)n mod n2

and Er2(m2) = (g)m2 · (r2)n mod n2, one can compute:

Er1r2(m1 +m2 mod n) = Er1(m1) · Er2(m2) mod n2 = (g)m1+m2 · (r1r2)n mod n2

Also note that, given Er(m) = gm · rn mod n2 and z ∈ Zn, one can compute:

Erz(m · z mod n) = Er(m)z mod n2 = gmz · rnz mod n2

Identity Based Encryption (IBE) [142, 21]. We consider Boneh and Franklin’s Identity Based

Encryption (IBE) scheme [21]. It is composed by four algorithms: setup, extract, encrypt, decrypt.

• Setup: given a security parameter τ , is used to generate a prime q, two groups G1,G2 of order

q, a bilinear map ê : G1 × G1 → G2. Then a random s ∈ Z∗q , a random generator P ∈ G1,

P are chosen and Q is set such that Q = sP . (P,Q) are public parameters, whereas, s is

the private master key. Finally, two cryptographic hash function, H1 : {0, 1}∗ → G1 and

H2 : G2 → {0, 1}τ are also chosen.

• Extract: given a string ID ∈ {0, 1}∗, is used to compute the corresponding private key

sH1(ID).

• Encrypt: is used to encrypt a message M under a public key ID: for a picked random r ∈ Z∗q
the ciphertext is set to be C = 〈U, V 〉 = 〈rP,M ⊕H2(ê(Q,H1(ID)r)〉.

• Decrypt: is used to decrypt a ciphertextC = 〈U, V 〉, by computingM = V⊕H2(ê(U, sH1(ID)).

2.3 Assumptions

We now present some cryptographic assumptions used in the rest of this dissertation.

Definition 2.1 (RSA Assumption on Safe Moduli). Let RSA-Gen(1τ ) be an algorithm that chooses

two random primes p′, q′ s.t. |p′| = |q′| = τ and p = 2p′ + 1 and q = 2q′ + 1 are also primes,

and outputs pairs (N, e) where N = pq, e is a small prime such that gcd(e, φ(N)) = 1. We say

that the RSA problem on safe moduli is (τ, t)-hard if, for every algorithm A running in time t, the

probability:

Pr[(N, e)←r RSA-Gen(1τ ), z ←r Z∗N : A(N, e, z) = y s.t. ye = z mod N ]

is a negligible function of τ .

13



Definition 2.2 (DDH Assumption). Let G be a cyclic group and let g be its generator. Assume that

the bit-length of the group size is τ . The Decisional Diffie-Hellman problem (DDH) is (τ, t)-hard

in G if, for every efficient algorithm A running in time t, the probability:

|Pr[x, y ←r {0, 1}τ : A(g, gx, gy, gxy) = 1]− Pr[x, y, z ←r {0, 1}τ : A(g, gx, gy, gz) = 1]|

is a negligible function of τ .

Definition 2.3 (CDH Assumption). Let g be a generator of a cyclic group G of order q. The

Computational Diffie-Hellman Problem (CDH) in G is (τ, t)-hard if, for every algorithmA running

in time t, the probability:

Pr[x, y ←r Zq : A(g, gx, gy) = gxy]

is a negligible function of τ .

DDH oracle. A DDH oracle in group G is an algorithm that returns 1 on queries of the form

(g, gx, gy, gz) for z = xy mod q, and 0 on queries of the form (g, gx, gy, gz) for z 6= xy mod q.

Definition 2.4 (GDH Assumption). Let g be a generator of a cyclic group G of order q. The Gap

Diffie-Hellman Problem (GDH) in group G is (τ, t)-hard if for every algorithm A running in time

t, with access to the DDH oracle DDHG in group G, the probability:

Pr[x, y ←r Zq : ADDHG(g, gx, gy) = gxy]

is a negligible function of τ .

Definition 2.5 (BDH Assumption). Let G1,G2 be two groups of prime order q. Let ê : G1 ×
G1 → G2 be an admissible bilinear map and let P be a generator of G1. The Bilinear Diffie-

Hellman Problem (BDH) in (G1,G2, ê) is (τ, t)-hard if, for every algorithmA running in time t,the

probability:

Pr[a, b, c←r Z∗q : A(P, aP, bP, cP ) = ê(P, P )abc]

is a negligible function of τ .

2.4 Tools

In this section, we consider signatures of knowledge of a discrete logarithm and equality

of two discrete logarithms in a cyclic group G = 〈g〉. In particular, we consider G where either its
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order or the bit-length of its order is known. Fujisaki and Okamoto [68] show that standard proofs

of knowledge that work in a group of known order are also proofs of knowledge in this setting. We

define discrete logarithm of y ∈ G with respect to base g as any integer x ∈ Z such that y = gx in

G. We assume a security parameter τ > 1.

Definition 2.6 (ZK of DL over a known order group). Let y, g ∈ G of order q. A pair (c, s) ∈
{0, 1}τ × Zq verifying c = H(y||g||gsyc||m) as a signature of knowledge of the discrete logarithm

of y = gx w.r.t. base g, on message m ∈ {0, 1}∗.

Definition 2.7 (ZK of DL over an unknown order group). Let y, g ∈ G where the group order is

unknown, but its bit-length is known to be l. A pair (c, s) ∈ {0, 1}τ × ±{0, 1}ε(l+τ)+1 verifying

c = H(y||g||gsyc||m) is a signature of knowledge of the discrete logarithm of y = gx w.r.t. base g,

on message m ∈ {0, 1}∗.

The player in possession of the secret x = logg y can generate the signature by choosing a random

t ∈ Zq (or ±{0, 1}ε(l+τ)) and then computing c and s as: c = H(y||g||gt||m) and s = t− cx in Zq
(or in Z).

Definition 2.8 (ZK of EDL over a known order group). Let y1, y2, g, h ∈ G of order q. A pair

(c, s) ∈ {0, 1}τ × Zq verifying c = H(y1||y2||g||h||gsyc1||hsyc2||m) is a signature of knowledge

of the discrete logarithm of both y1 = gx w.r.t. base g and y2 = hx w.r.t. base h, on message

m ∈ {0, 1}∗.

Definition 2.9 (ZK of EDL over an unknown order group). Let y1, y2, g, h ∈ G where the group

order is unknown, but its bit-length is known to be l. A pair (c, s) ∈ {0, 1}τ ×±{0, 1}ε(l+τ)+1 veri-

fying that c = H(y1||y2||g||h||gsyc1||hsyc2||m) is a signature of knowledge of the discrete logarithm

of both y1 = gx w.r.t. base g and y2 = hx w.r.t. base h, on message m ∈ {0, 1}∗.

The player in possession of the secret x = logg y1 = logh y2 can generate the signature by choosing

a random t ∈ Zq (or ±{0, 1}ε(l+τ)) and then computing c and s as: c = H(y1||y2||g||h||gt||ht||m)

and s = t− cx in Zq (or in Z).

2.5 Adversarial Models

One distinguishing factor on the security of cryptographic protocols is the adversarial

model which is typically either semi-honest or malicious. In the rest of this dissertation, the term

adversary refers to insiders, i.e., protocol participants. Outside adversaries are not considered, since
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their actions can generally be mitigated via standard network security techniques. We follow the

well-known formulations by Goldreich [77], summarized below.

Protocols secure in the presence of semi-honest adversaries (or honest-but-curious) as-

sume that participants faithfully follow all protocol specifications and do not misrepresent any in-

formation related to their inputs, e.g., size and content. However, during or after protocol execution,

any participant might (passively) attempt to infer additional information about the other participant’s

input. This model is formalized by considering an ideal implementation where a Trusted Third Party

(TTP) receives the inputs of both participants and outputs the result of the defined function. Security

in the presence of semi-honest adversaries requires that, in the real implementation of the protocol

(without a TTP), each participant does not learn more information than in the ideal implementation.

Security in the presence of malicious adversaries allows arbitrary deviations from the

protocol. In general, however, it does not prevent participants from refusing to participate in the

protocol, modifying their inputs, or prematurely aborting the protocol. Security in malicious model

is achieved if the adversary (interacting in the real protocol, without the TTP) can learn no more

information than it could in the ideal scenario. In other words, a secure protocol emulates (in its

real execution) the ideal execution that includes a TTP. This notion is formulated by requiring the

existence of adversaries in the ideal execution model that can simulate adversarial behavior in the

real execution model.

We refer to [77] for formal definitions of semi-honest and malicious behavior in general

cryptographic protocols.
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Chapter 3

Related Work

In this chapter, we discuss relevant related work in the context of privacy-preserving cryp-

tographic protocols.

3.1 Cryptographic Protocols for Implicit Authentication

Techniques for implicit authentication leverage oblivious (or hidden) credentials to verify

that a user is member of a certain group.

We briefly discussed implicit authentication protocols in Section 1.2.1; below, we overview

state-of-the-art constructs.

Secret Handshakes (SH-s) [8, 96, 35, 147, 99]. SH-s (also called Affiliation-Hiding Authentica-

tion) allow two parties with group membership credentials issued by the same trusted entity – called

Group Authority (GA) – to privately authenticate each other. Specifically, each party can prove to

the other that it has a valid credential, however, this proof hides the identity of the issuing organi-

zation, unless the other party also has a valid credential from the same organization. An extension

of the SH concept – known as Affiliation-Hiding Authenticated Key Exchange (AH-AKE) – can

be used to establish a common shared secret upon success of the SH protocol [96, 97, 116]. Some

protocols, such as [97], also support multiple credentials (i.e, multiple GAs), whereas, others relax

GA trust assumptions [116].

Hidden Credentials (HC-s) [23]. Using HC-s, each party can create a public key corresponding
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to an arbitrary string (e.g., “FBI agent”) and the public key of a Trusted Third Party (TTP). Only

the TTP can issue the corresponding private key to the “owner” of the string. One can then send

messages to another entity based on credentials that she may or may not have. The sender may not

know that the receiver is an FBI agent: however, the former is ensured that the latter decrypts the

message only if knowing the private key corresponding to “FBI agent”. Note that this problem is

similar to SH-s. However, SH-s require that parties mutually authenticate using credentials from

the same issuer. In contrast, HC-s allow the sender to send a message depending only on receiver’s

credentials – the sender does not even need to have any credentials of her own.

Oblivious Signature-based Envelopes (OSBE-s) [111, 127]. OSBE-s allow a sender to release

some information to a receiver conditional upon the latter’s possession of a signature, issued by a

trusted authority on a message known to both parties (e.g., “FBI agent”), while the sender learns

nothing about the signatures held by the receiver. OSBE-s are very similar to HC-s, however, they

require that parties agree on a message that the signature presumably signs. In other words, the

sender needs to disclose its policy to the client.

Anonymous Credentials (AC-s) [24, 28]. AC-s allow a credential provider to issue a user an

anonymous credential on various attributes. The user can then prove to a third party that she pos-

sesses valid credentials issued by that provider, yet without revealing further information about cre-

dentials and attributes. Note, however, that AC proofs disclose (some) information about credential

issuers.

3.2 Protocols for Oblivious Information Transfer

As discussed in Section 1.2.1, several cryptographic constructs enable oblivious transfer

of information between two entities. We review them below.

Oblivious Transfer (OT) [136]. The need for an Oblivious Transfer (OT) mechanism was first

pointed out by Rabin [136]. The classic OT formulation involves a sender with n secret mes-

sages and a receiver with one index (i). The receiver wants to retrieve the i-th among sender’s

messages (and nothing else), without the sender learning i. Several OT constructs has been pro-

posed [56, 25, 123, 124, 29]. OT is also a fundamental tool of Public-Key Cryptography, as proven

by Killian [107].

Private Information Retrieval (PIR) [40]. PIR enables a client to retrieve an item from a server
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(public) database without revealing which item it is retrieving, with the additional requirement that

communication overhead must be strictly lower than linear in the database size. PIR techniques

follow two possible approaches: they either employ data replication and assume multiple non-

cooperating servers [40, 11, 39, 131], or they use a single computationally-bounded server [109,

73, 114]. In PIR, privacy of server’s database is not ensured, i.e., the client might receive records

(or part of them) beyond those requested. In Symmetric-PIR (SPIR) [74], the server releases to the

client exactly one data item per query, thus realizing OT with communication overhead lower than

linear. Similar to OT, PIR clients need to know and input the index of the desired item in server’s

database. An extension enabling retrieval by keywords is Keyword-PIR (KPIR) [39, 131]. For more

details on PIR, we refer to [132, 115].

3.3 Private Set Intersection

An important tool for privacy-preserving sharing of sensitive information is Private Set

Intersection (PSI). This section reviews prior work on PSI. We start with the general formulation

and then consider two variants: Authorized Private Set Intersection (APSI) and Size-Hiding Private

Set Intersection (SHI-PSI).

3.3.1 Available PSI Protocols

PSI is a protocol involving a server and a client, on inputs S = {s1, . . . , sw} and C =

{c1, . . . , cv}, respectively, that results in the client obtaining S ∩ C. As a result of running PSI,

set sizes are reciprocally disclosed to both server and client. In the variant called PSI with Data

Transfer (PSI-DT), each item in server set has an associated data record, i.e., server’s input is

S = {(s1, data1), · · · , (sw, dataw)}, and client’s output is defined as {(sj , dataj) ∈ S | ∃ci ∈
C s.t. ci = sj}.

There are two classes of PSI protocols: one based on Oblivious Polynomial Evaluations

(OPE) [125], and the other based on Oblivious Pseudo-Random Functions (OPRF-s) [65].

Freedman, Nissim, and Pinkas [66] introduce the concept of Private Set Intersection and

and propose a protocol based on OPE. They represent a set as a polynomial, and elements of the set

as its roots. A client encodes elements in its private set C as the roots of a v-degree polynomial over

a ring R, i.e., f =
∏v
i=1(x − ci) =

∑k
i=0 αix

i. Then, assuming pkC is client’s public key for any

additively homomorphic cryptosystem (such as Paillier’s [133]), the client encrypts the coefficients
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with pkC , and sends them to server. The latter homomorphically evaluates f at each sj ∈ S . Note

that f(sj) = 0 if and only if sj ∈ C ∩ S. For each sj ∈ S , returns uj = E(rjf(sj) + sj) to the

client (where rj is chosen at random and E(·) denotes additively homomorphic encryption under

pkC). If sj ∈ C ∩ S then the client learns sj upon decrypting. If sj /∈ C ∩ S then uj decrypts

to a random value. To enable data transfer, the server can return E(rjf(sj) + (sj ||dataj)), for

each sj in its private set S. The protocol in [66] incurs the following complexities: The number

of server operations depends on the evaluation of client’s encrypted polynomial with v coefficients

on w points (in S). Using Paillier cryptosystem [133] and a 1024-bit modulus, this costs O(vw) of

1024-bit mod 2048-bit exponentiations.1 On the other hand, client computes O(v + w) of 1024-

bit mod 2048-bit exponentiations. However, server computation can be reduced to O(w log log v)

using: (1) Horner’s rule for polynomial evaluations, and (2) a hashing-to-bins method (see [66]

for more details). If one does not need data transfer, it is more efficient to use the Exponential

ElGamal cryptosystem [54] (i.e., an ElGamal variant that provides additively homomorphism).2

Such a cryptosystem does not provide efficient decryption, however, it allows client to test whether

a ciphertext is an encryption of “0”, thus, to learn that the corresponding element belongs to the

set intersection. As a result, efficiency is improved, since in ElGamal the computation may make

use of: (1) very short random exponents (e.g., 160-bit) and (2) shorter moduli in exponentiations

(1024-bit). The PSI protocol in [66] is secure against honest-but-curious adversaries in the standard

model, and can be extended to malicious adversaries in the Random Oracle Model (ROM), at an

increased cost.

Hazay and Nissim [87] present an improved construction of [66], in the presence of ma-

licious adversaries without ROM, using zero-knowledge proofs to let client demonstrate that en-

crypted polynomials are correctly produced. Perfectly hiding commitments, along with an Oblivi-

ous Pseudo-Random Function evaluation protocol, are used to prevent server from deviating from

the protocol. The protocol in [87] incurs O(v+w(log log v+m)) computational and O(v+w ·m)

communication complexity, where m is the number of bits needed to represent a set element.

Kissner and Song [108] also propose OPE-based protocols involving (potentially) more

than two players. They present one technique secure in the standard model against semi-honest

and one – against malicious adversaries. The former incurs quadratic – O(vw) – computation

(but linear communication) overhead. The latter uses expensive generic zero-knowledge proofs to
1Encryption and decryption in the Paillier cryptosystem [133] involve exponentiations mod n2: if |n| = 1024 bits,

then |n2| = 2048 bits (where n is the public modulus). For more details, see Section 2.2.
2In the Exponential ElGamal variant, encryption of message m is computed as Eg,y(m) = (gr, yr · gm) instead of

(gr,m · yr), for random r and public key y.
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Figure 3.1: High-level view of Private Set Intersection protocols based on Oblivious Pseudo-

Random Functions.

prevent parties from deviating to the protocol. Also, it is not clear how to enable data transfer.

Dachman-Soled, et al. [44] also present an OPE-based PSI construction, improving on [108].

Their protocol incorporates a secret sharing of polynomial inputs: specifically, as Shamir’s secret

sharing [140] implies Reed-Solomon codes [138], generic (i.e., expensive) zero-knowledge proofs

can be avoided. Complexity of resulting protocol amounts to O(wk2 log2(v)) in communication

and O(wvk log(v) + wk2 log2(v)) in computation, where k is a security parameter.

Other techniques rely on Oblivious Pseudo-Random Functions (OPRF-s), introduced in [65].

An OPRF is a two-party protocol that securely computes a pseudo-random function fk(·) on key

k contributed by the sender and input x contributed by the receiver, such that the former learns

nothing from the interaction and the latter learns only the value fk(x). Most prominent OPRF-

based protocols are presented below. The intuition behind OPRF-based PSI protocols is illustrated

in Figure 3.1: server and client interact in v parallel execution of the OPRF fk(·), on input k and

ci, ∀ ci ∈ C, respectively. As the server transfers Ts:j = fk(sj),∀ sj ∈ S and the client obtains

Tc:i = fk(ci), ∀ ci ∈ C, the client learns the set intersection by finding matching (Ts:j , Tc:i) pairs,

while it learns nothing about values sl ∈ S \ S ∩ C, since fk(sl) is indistinguishable from random,

if fk(·) is a pseudo-random function.3

Hazay and Lindell [85] propose the first PSI construction based on OPRF-s. In it, the

server generates a secret random key k, then, for each sj ∈ S, computes uj = fk(sj), and sends

the client the set U = {u1, · · · , uw}. Next, client and server engage in an OPRF computation of

3For more details on pseudo-random functions, we refer to [104, 78].
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fk(ci) for each ci ∈ C. Finally, the client learns that ci ∈ C ∩ S if (and only if) fk(ci) ∈ U . [85]

introduces two constructions: one secure in the presence of malicious adversaries with one-sided

simulatability, the other – in the presence of covert adversaries [6].

Jarecki and Liu [98] improve on [85] by constructing a protocol secure in the standard

model against both malicious parties, based on the Decisional q-Diffie-Hellman Inversion assump-

tion, in the Common Reference String (CRS) model, where a safe RSA modulus must be pre-

generated by a trusted party. The OPRF in [98] is built using the Camenisch-Shoup additively

homomorphic cryptosystem [30] (CS for short). However, this technique can be optimized, lead-

ing to the work by Belenkiy, et al. [12]. In fact, the OPRF construction could work in groups of

160-bit prime order, unrelated to the RSA modulus, instead of (more expensive) composite order

groups [98]. Thus improved, the protocol in [98] incurs the following computational complexity: the

server needs to perform O(w) PRF evaluations, specifically, O(w) modular exponentiations of m-

bit exponents mod n2, where m the number of bits needed to represent set items and n2 is typically

2048-bit long. The client needs to compute O(v) CS encryptions, i.e., O(v) m-bit exponentiations

mod 2048 bits, plus O(v) 1024-bit exponentiations mod 1024 bits. The server also computes O(v)

1024-bit exponentiations mod 1024 bits andO(v) CS decryptions – i.e., O(v) 1024-bit exponentia-

tions mod 2048 bits. Complexity in malicious model grows by a factor of 2. The input domain size

of the pseudo-random function in [98] is limited to be polynomial in the security parameter, since

the security proof requires the ability to exhaustively search over input domain.

Jarecki and Liu [100] also propose a PSI protocol based on a related concept – Unpre-

dictable Functions (UPFs). One specific UPF, fk(x) = H(x)k, is used as a basis for two-party

computation (in ROM), with the server contributing the key k and the client – the argument x. The

client picks a random exponent α and sends y = H(x)α to the server, that replies with z = yk,

so that the client recovers fk(x) = z1/α. This is similar to techniques proposed in [94] and [57].

Similar to OPRFs, the UPF can be used to implement secure computation of (Adaptive) Set Inter-

section, under the One-More-Gap-DH assumption in ROM [14]. The resulting protocol is, however,

remarkably faster: random exponents can be taken from a subgroup. Therefore, the computational

complexity of the UPF-based PSI in [100] amounts to O(w + v) exponentiations with short expo-

nents at server side andO(v) at client side (e.g., 160-bit mod 1024-bit). Communication complexity

is also linear is input set size, i.e., O(w + v).

In summary, prior work has yielded a number of PSI techniques. However, as usually

happens, the next step is to improve their efficiency. We identify the need for linear-complexity PSI

constructions, entailing fast cryptographic operations (e.g., using short exponents), and relying only

22



on standard computational assumptions (e.g., without using assumptions of the One-More type),

in the presence of both semi-honest and malicious adversaries. Also, PSI interactions may often

involve players with relatively unbalanced computational power, e.g., a client might be represented

by a device with limited resources, such as smartphones.

3.3.2 Authorized Private Set Intersection

We now review work resembling APSI, which we will define in Chapter 5.

Recall from Section 1.2.2 that in PSI the client learns the set intersection while the server

learns nothing: this might threaten server’s privacy if the client maliciously populate its input set

with its best guesses of the server set (especially, if the set is easy to exhaustively enumerate). In

the extreme case, the client could even claim that its set contain all possible elements. We claim

that this issue cannot be effectively addressed without some mechanism to authorize client inputs.

The intuition behind APSI is that client’s input items need to be certified (i.e., authorized) by an

appropriate (offline) trusted authority, in such a way that the client has access to only duly authorized

items. The challenge is to do so without divulging to the server any information about client inputs

or authorizations.

We will define APSI as follows: it is a protocol involving a server and a client, on input,

respectively, S = {s1, . . . , sw} and C = {(c1, σ1), . . . , (cv, σv)}. It results in the client obtaining

{sj ∈ S | ∃(ci, σi) ∈ C s.t. ci = sj ∧ σi is valid authorization on ci}. A very similar functionality

can also be realized from Privacy-preserving Policy-based Information Transfer (PPIT), presented

in Chapter 4.

One related concept is Authorised Private Searches on Public-key Encrypted Data [27].

In it, a server encrypts records and associated keywords using an Identity-Based Encryption (IBE)

scheme [21]. A client can search for a given keyword only if it has a corresponding trapdoor,

issued by a TTP. In doing so, (1) server learns nothing about client’s trapdoors, and (2) client learns

nothing about keywords not matching its searches. Note, however, that the testing algorithm in [27]

requires the client to test each trapdoor against each encrypted keyword it receives, thus, incurring

a quadratic overhead. Furthermore, [27] is built on top of the Boyen-Waters IBE scheme [22]. In

it, encryption requires 6 exponentiations and takes 6 group elements, while decryption requires 5

bilinear map operations. As a result, the efficiency of this scheme quickly becomes impractical for

increasing input sizes.

Also related to APSI is the technique in [31], that allows a TTP to ensure that all protocol
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inputs are valid and bound to each protocol participant. The proposed protocol is mutual (i.e., both

parties receive the intersection) and incurs quadratic computation and communication overhead

(similar to the PSI protocol on which it is based, i.e., [108]).

3.3.3 Size-Hiding Protocols

As discussed in Section 1.2.2, there is no available PSI construct that hides the size of par-

ticipants’ inputs – an important requirement in some realistic scenarios. In Chapter 7, we introduce

the first Size-Hiding Private Set Intersection (SHI-PSI).

Note that even generic techniques for secure two-party computation (e.g., [79, 148], dis-

cussed in 1.2.1) reveal the sizes of both parties inputs.

Ishai and Paskin [95] consider privacy in branching programs. Given a branching pro-

gram P (held by a server) and encryption c of message x (held by a client), the technique in [95]

computes ciphertext c′ from which P (x) can be decoded (using the corresponding secret key). Size

of c′ depends, polynomially, on sizes of x and P . Thus, neither client computation nor communi-

cation overhead depends on server input size P , that remains secret to client. Although one could

theoretically attempt to implement PSI with a branching program and hide server input size, we

argue that this generic construction would involve a high computational overhead – polynomial in

the size of inputs.

Some work focuses on secure computation of pattern matching [85, 71, 105, 88], where

a client holds a pattern and a server holds an arbitrarily-long text string. The goal of the client is

to learn where the pattern appears in the text, without revealing it to the server or learning anything

else about server’s input. However, the size of P1’s pattern is always revealed to P2. [88] sketches

a possible way to hide pattern size, however, only by means of random padding. As we will dis-

cuss later in Chapter 7, this is approach exposes the upper bound. It also imposes a substantial

performance penalty, as protocol complexity increases from linear to quadratic.

Finally, the need for hiding input sizes is discussed in [120]. A server publishes a short

snapshot of its private database, i.e., a commitment. Later, a client can request the server to prove

whether a given item, x, belongs to the committed set. Neither the commitment nor the proof

reveals the size of server database. However, the problem addressed in [120] is quite different from

(size-hiding) PSI.

24



3.3.4 Additional Constructs

Secret Handshakes (SH-s) slightly resemble APSI as they can be viewed as a symmetric

set intersection protocol (with authorization) where the set is of size one. Some Secret Handshakes,

however, are bi-directional authentication protocols. Thus, they are not directly applicable to one-

way (client-to-server) authentication scenarios. Other related constructs, such as Hidden Creden-

tials (HC-s) and Oblivious Signature-Based Envelopes (OSBE-s) provide uni-directional primitives.

However, as discussed in the next chapter, it is not clear how to adapt them to APSI.

Also, PSI shares some features with Private Information Retrieval (PIR), as they both al-

low a client to privately retrieve information from a server. However, in PIR, the server is willing

to release any of its data to the client. Furthermore, Symmetric-PIR (SPIR) additionally protects

server’s privacy, however, the client needs to input the index of the desired item in server’s database

(unlike PSI). Finally, Keyword-PIR (KPIR) does not consider server privacy. It also involves mul-

tiple rounds of PIR executions, and requires multiple non-cooperating servers [131]. It is also not

clear how to adapt PIR techniques to ensure that the client is authorized to retrieve the requested

item.

Finally, generic secure computation techniques could also be used to realize PSI, e.g., by

means of Yao’s garbled circuits [148]. However, such techniques are notoriously inefficient, since

the size of the circuit would at least be quadratic in the size of players’ inputs.
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Chapter 4

Transferring Confidential Information

based on Implicit Signature Verification

In this chapter, we motivate and introduce the concept of Privacy-preserving Policy-based

Information Transfer (PPIT). PPIT combines mechanisms for Implicit Authentication and

Oblivious Information Transfer. After formalizing PPIT functionality and its security

model, we present three efficient instantiations obtained, respectively, from RSA signatures,

Schnorr signatures, and Identity-based Encryption.

4.1 Introduction & Motivation

There are many scenarios where sensitive information is requested by some authority due

to some legitimate need. The challenge for the information owner is to allow access to only duly

authorized information, whereas, the challenge for the information requester is to obtain needed

information without divulging what is being requested.

Consider the following example. University of Lower Vermont (ULoVe) is confronted

with an FBI investigation focused on one of its faculty members (Alice). The University is un-

derstandably reluctant to allow FBI unlimited access to its employee records. For its part, FBI is

unwilling to disclose that Alice is the target of investigation. There might be several reasons for

FBI’s stance: (1) Concern about unwarranted rumors and tarnishing Alice’s reputation, e.g., leaked

information might cause legal action and result in bad PR for the FBI; (2) The need to keep the

26



investigation secret, i.e., preventing malicious insiders (ULoVe employees) from forewarning Alice

about the investigation. Ultimately, ULoVe must comply with FBI’s demands, especially, if the lat-

ter is armed with appropriate authorization (e.g., a court order) from, e.g., the US Attorney General’s

office. However, the authorization presumably applies only to Alice. Assuming all communication

between ULoVe and FBI is electronic, there seems to be an impasse. An additional nuance is that,

even if ULoVe is willing to provide FBI unrestricted access to all its employee records, FBI may

not want the associated liability. This is because mere possession of ULoVe sensitive employee

information would require FBI to demonstrate that the information is/was treated appropriately and

disposed of when no longer needed. Considering a number of recent incidents of massive losses of

sensitive government and commercial employees’ records [33], FBI might be unwilling to assume

additional risk.

In general, we consider the need to transfer information (or, more generally, perform some

data-centric task) between two parties who are willing and/or obligated to transfer information in

an accountable and policy-guided (authorized) manner. Therefore, the main technical challenge

is how to enable the information owner to efficiently and obliviously compute proper authoriza-

tion decisions, while: (1) preserving privacy of its data, and (2) preserving privacy of requester’s

authorizations.

To this end, this chapter introduces and formalizes the concept of Privacy-preserving

Policy-based Information Transfer (PPIT). PPIT considers the following setting, involving an in-

formation owner (server), a requester (client), and an authorization authority (CA). The server holds

a database of records in the form (ID,D): ID denotes a unique record identifier and D the associated

information. The client is interested in acquiring a specific record, e.g., that identified by the string

ID∗. In order to do so, it needs to obtain an appropriate authorization from CA. PPIT ensures that

the client attains information pertaining ID∗, while: (1) the server learns nothing about client’s in-

terests or authorizations, and (2) the client learns nothing about any server’s record unless it is duly

authorized.

Note that PPIT makes no assumption on the format of database records or their identifiers.

For instance, records can be strings, database entries, files, or even binary data.

4.2 Preliminaries

This section introduces the PPIT primitive, including: players, components, and security

definitions.
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4.2.1 Players

PPIT involves three entities: server, client, and CA:

• Server – stores a list of records, I =
{

(IDs:j ,Dj)|IDs:j ∈ {0, 1}l
}w
j=1

, where each IDs:j is a

l-bit string that uniquely identifies a record and Dj denotes the associated information (with

arbitrary length).

• Client – holds a pair (ID∗, σ), where ID∗ is an l-bit unique identifier and σ is an authorization

for ID∗.

• CA – is an off-line trusted third party that authorizes clients to access specific records.

4.2.2 PPIT Algorithms

PPIT is composed of three algorithms: (Setup,Authorize,Transfer):

• Setup(1τ ): Given a security parameter τ , CA, after selecting an appropriate digital signature

scheme, DSIG = (KGen,Sign,Vrfy), generates a key-pair (sk,pk), via KGen, and publishes

pk.

• Authorize(sk, ID∗): CA issues an authorization σ on a given identifier ID∗, contributed by

the client, where σ = Signsk(ID
∗). For each invocation of (σ = Authorize(sk, ID∗)),

Vrfy(pk, ID∗, σ) = 1.

• Transfer: Server and client interact on public input pk, on server’s private input

I =
{

(IDs:j ,Dj)|IDs:j ∈ {0, 1}l
}w
i=1

and client’s private input (σ, ID∗). At the end of

Transfer, server has no output and client outputs:

{(IDs:j ,Dj) ∈ I | ∃j s.t. IDs:j = ID∗ and Vrfy(ID∗, σ) = 1}.

4.2.3 Security & Privacy Requirements

PPIT must satisfy the following security and privacy requirements.

Correctness. A PPIT scheme is correct if, at the end of Transfer, the client outputs D,

given that:

(1) (sk, pk)← Setup(1τ ) and σ = Authorize(ID∗),

(2) Server and client run Transfer on input (ID∗,D) and (ID, σ), respectively.
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Security. PPIT security guarantees that only clients authorized to access data D can learn any

information about D. Formally, we say that a PPIT scheme is secure if any polynomially bounded

adversary A cannot win the following game, with probability non-negligibly over 1/2. The game is

between A and a challenger Ch:

1. Ch runs (pk, sk)← Setup(1τ ).

2. A, on input pk, adaptively queries Ch a polynomial number q of times on a set of strings Q =

{IDi|IDi ∈ {0, 1}l}qi=1. For every IDi, Ch responds by giving A a signature

σi ← Signsk(IDi).

3. A announces a new identifier string, ID∗ /∈ Q, and generates two equal-length data record

(D0
∗,D1

∗).

4. Ch picks one record by selecting a random bit b ←r {0, 1}, and executes server’s part of

Transfer on public input pk and private inputs (ID∗,D∗b).

5. A outputs b′ (and wins if b′ = b).

Server Privacy. While the previous definition captures privacy of server’s data, we now focus

on privacy of server’s identifiers. A PPIT scheme allows only authorized clients to learn any in-

formation about the ID-s inputted by server in the interaction with the client. Decoupling server

privacy from server security is needed to capture two different problems. In fact, server privacy is

not required when identifiers are public. For instance, in the University scenario discussed earlier

in Section 4.1, the list of ULoVe employees (and thus their identifiers) might be public. Formally,

we say that a PPIT scheme is server-private if no polynomially bounded adversary A can win the

following game with probability non-negligibly higher than 1/2. The game proceeds betweenA and

Ch:

1. Ch runs (pk, sk)← Setup(1τ ).

2. A, on input pk, adaptively queries Ch a number q of times on a set of strings Q = {IDi|IDi ∈
{0, 1}l}qi=1. For every IDi, Ch responds by giving A a signature σi ← Signsk(IDi).

3. A announces two new identifier strings, (ID0
∗, ID1

∗) /∈ Q, and generates a data record D∗.

4. Ch picks one identifier by selecting a random bit b ←r {0, 1}, and executes server’s part of

Transfer on public input pk and private inputs (IDb
∗,D∗).
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5. A outputs b′ (and wins if b′ = b).

Security and server privacy games could be merged into one. In fact, it is possible to modify A to

announce two pairs (ID0
∗,D0

∗), (ID1
∗,D1

∗) and let Ch pick a random bit b and execute server’s

part of Transfer on input (IDb
∗,Db

∗). The security property alone is obtained by restricting A’s

challenge query so that (ID0
∗ = ID1

∗), while server privacy alone is obtained if (D0
∗ = D1

∗).

Client Privacy. Client privacy guarantees that no information is leaked about client’s input to a

malicious server. Formally, a PPIT scheme is client-private if no polynomially bounded adversary

A can win the following game with the probability non-negligibly over 1/2. The game is between

A and Ch:

1. Ch executes (pk, sk)← Setup(1τ ).

2. A, on input sk, chooses two strings ID0
∗, ID1

∗ and two strings σ0∗, σ1∗.

3. Ch picks a random bit b ←r {0, 1} and interacts with A by following Transfer on behalf of

client on public input pk and private inputs (IDb∗, σb∗).

4. A outputs b′ (and wins if b′ = b).

4.3 RSA-PPIT

PPIT Intuition. The main idea behind PPIT is the following. The server and the client engage

in a cryptographic protocol and conditionally agree on a shared key, used to establish a session

encryption key (à la Diffie-Hellman). The necessary condition upon key establishment is an implicit

verification on client’s possession of a digital signature. In other words, the server, for each record,

computes a key by obliviously verifying client’s signature; on the other hand, the client extracts the

same key (from the protocol) only if it holds a valid signature (issued by CA) for the corresponding

record.

We now present our first PPIT instantiation, i.e., RSA-PPIT – based on RSA signatures.

Setup. On input of security parameter τ , CA generates a safe RSA modulus N = pq, i.e.,

p = 2p′ + 1, q = 2q′ + 1, and p, q, p′, q′ are primes. The algorithm picks a random element

g generator of QRN . RSA exponents (e, d) are chosen in the standard way. The secret key is
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sk = (p, q, d) and the public key pk = (N, g, e). The algorithm also fixes a full-domain hash

function H1 : {0, 1}∗ → ZN , and two other cryptographic hash functions H2 : {0, 1}∗ → {0, 1}τ ,

H3 : {0, 1}∗ → {0, 1}τ .

Authorize. To issue an authorization on ID∗ to a client, CA computes an RSA signature on ID∗,

σ = H1(ID
∗)d mod N . The signature on ID∗ can be verified by checking if σe mod N = H1(ID

∗).

Transfer. This protocol is between a client a the server, where public input is pk = (N, e, g),

and client’s private input is (ID∗, σ), where σe = H1(ID
∗) mod N , and server’s private input is

I =
{

(IDs:j ,Dj)|IDs:j ∈ {0, 1}l
}w
i=1

. The resulting protocol is illustrated in Figure 4.1. Proofs

appear in Section 4.7.

[Common input: N, e, g,H1(·), H2(·), H3(·)]

Client, on input: (ID∗, σ), where: Server, on input: I, where:

σ = H1(ID∗)d I = {(IDs:1,D1), . . . , (IDs:w,Dw)}

Rc ←r ZN/4, µ = σ2 · gRc µ
// If µ /∈ Z∗N then abort

Rs ←r ZN/4, Z = geRs

For j = 1, . . . , w:

Ks:j = (µ)eRs ·H1(IDj)
−2Rs

Ts:j = H2(Ks:j), ks:j = H3(Ks:j)

CTs:j = Encks:j (Dj)

Z, {Ts:1, . . . , Ts:w}

{CTs:1, . . . , CTs:w}
oo

Kc = ZRc

Tc = H2(Kc), kc = H3(Kc)

If ∃ Ts:j s.t. Ts:j = Tc, then

D∗ = Deckc(CTs:j)

Output: (ID∗,D∗)

[All computation is mod N ]

Figure 4.1: Our RSA-PPIT instantiation.
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To see that RSA-PPIT is correct, observe that, if ID∗ = IDs:j , then:

Ks:j =(µ)eRs ·H1(IDs:j)
−2Rs = (H1(ID

∗)2d · gRc)eRs ·H1(IDs:j)
−2Rs =

=H1(ID
∗)2Rs · geRcRs ·H1(IDs:j)

−2Rs = geRsRc = ZRc = Kc (4.1)

Thus, Ts:j = H2(Ks:j) = H2(Kc) = Tc:i (similarly Ks:j = Kc).

Protocol Complexity. The protocol in Figure 4.1 incurs the following complexities. Server

overhead is dominated by O(w) modular exponentiations (in the RSA group), whereas, client com-

putation amounts to O(1). Communication overhead is dominated by server’s response, i.e., w

ciphertexts and hash values.

We remark that this construction is loosely based on RSA-OSBE from [111] (overviewed

in Section 3.1). Recall, however, that OSBE targets the transmission of a single message, while

PPIT applies to scenarios where the server holds multiple (w) records. Nonetheless, one may try

to adapt RSA-OSBE to the PPIT scenario by running w batched invocations of RSA-OSBE. This

would incur the same asymptotic complexity (i.e., linear), however, the client would be forced to

perform O(w) decryptions – a significant overhead in scenarios where records are long (e.g., in the

order of megabytes).

Whereas, our construction minimizes client computation using a tagging technique that

lets the server label each ciphertext with a unique tag. In RSA-PPIT, each tag Ts:j is the output of a

one-way function (in practice, a cryptographic hash function modeled as a random oracle) computed

over a Diffie-Hellman key Ks:j . As discussed above, if (and only if) the client holds and inputs a

signature on the corresponding IDs:j , it reconstructs the Diffie-Hellman key and can match the tag.

This way, the client does not need to try decrypting all ciphertexts.

Also note that the client sends the server (µ = σ2 · gRc), whereas, in RSA-OSBE, the

client would send (σ · H1(ID)Rc). We square σ to guarantee that µ is in QRN , a crucial detail in

our proofs that has been overlooked [111]. The use of g will allow the client to batch computation

in case it has multiple inputs, as we show in Section 4.6.2.

4.4 Schnorr-PPIT

In this section, we present another PPIT instantiation, based on Schnorr signatures (see

Section 2.2).
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Setup. On input of a security parameter τ , CA generates a Schnorr key: (p, q, g, a, y), where p,

q are primes, s.t. q divides p − 1 but q2 does not divide p − 1, g is a generator of a subgroup in

Z∗p of order q, a is picked randomly in Z∗q , and y = ga mod p. The public key is pk = (p, q, g, y)

and the secret key is sk = a. The algorithm also defines hash functions H1 : {0, 1}∗ → Z∗q ,

H2 : {0, 1}∗ → {0, 1}τ , H3 : {0, 1}∗ → {0, 1}τ .

Authorize. To issue authorization on a given string ID∗, CA computes a Schnorr signature σ =

(X, s) where X = gk mod p and s = k + a · H1(ID
∗, X) mod q, for a random k ∈ Z∗q . The

signature on ID∗ is verified by checking whether gs = X · yH1(ID∗,X) mod p.

Transfer. This protocol is between a client and a server, where public input is pk = (p, q, g, y),

and client’s private input is (ID∗, σ = (X, s)), s.t. gs = X · yH1(ID∗,X) mod p and server’s private

input is I =
{

(IDs:j ,Dj)|IDs:j ∈ {0, 1}l
}w
i=1

. The resulting protocol is illustrated in Figure 4.2.

Proofs appear in Section 4.7.

[Common input: N, e, g,H1(·), H2(·), H3(·)]

Client, on input: (ID∗, σ), where: Server, on input: I, where:

σ = (X, s) I = {(IDs:1,D1), . . . , (IDs:w,Dw)}

gs = X · yH1(ID∗,X) X
// If X(p−1)/q 6= 1 mod p then abort.

Rs ←r Z∗q , Z = gRs

For j = 1, . . . , w:

Ks:j = (yH1(IDs:j ,X) ·X)Rs

Ts:j = H2(Ks:j), ks:j = H3(Ks:j)

CTs:j = Encks:j (Dj)

Z, {Ts:1, . . . , Ts:w}

{CTs:1, . . . , CTs:w}
oo

Kc = Zs

Tc = H2(Kc), kc = H3(Kc)

If ∃ Ts:j s.t. Ts:j = Tc, then

D∗ = Deckc(CTs:j)

Output: (ID∗,D∗)

[All computation is mod p]

Figure 4.2: Our Schnorr-PPIT instantiation.

33



To see that Schnorr-PPIT is correct, observe that, if ID∗ = IDs:j , then:

Ks:j = (yH1(IDs:j ,X) ·X)Rs = (gaH1(IDs:j ,X) · gk)Rs = (gaH1(ID∗,X)+k)Rs = gsRs = Kc (4.2)

Thus, Ts:j = H2(Ks:j) = H2(Kc) = Tc:i (similarly Ks:j = Kc).

Protocol Complexity. Similar to its RSA counterpart, the protocol in Figure 4.2 incurs linear

computation and communication complexity. Server overhead is dominated by O(w) modular ex-

ponentiations in the Schnorr setting, i.e., using short exponents. Client computation amounts to

O(1), whereas, communication overhead is dominated by server’s response, i.e., w ciphertexts and

hash values.

Schnorr-PPIT protocol is loosely based on the Schnorr-OSBE construction in [127]. How-

ever, in order to minimize client computation, we add a tagging technique similar to RSA-PPIT.

Also, proofs for Schnorr-PPIT differ substantially from those of Schnorr-OSBE, given the differ-

ent nature of privacy requirements and players’ inputs (one message in OSBE vs many records in

PPIT).

4.5 IBE-PPIT

In this section, we show how to obtain a PPIT instantiation from any Anonymous Identity-

Based Encryption (IBE) scheme.1

Recall that IBE is a public-key system where any string can be used as a valid public key.

A trusted third party (Private Key Generator or PKG), holding a secret master key, can generate

private keys corresponding to any public key, by signing the latter using the secret master key.

One-round PPIT can be instantiated using any Anonymous IBE scheme. CA acts as

PKG and, during Setup, runs IBE setup algorithm to generate the KDC master key and global IBE

system parameters. Then, during Authorize, CA authorizes a client, on a given ID∗, by issuing the

IBE private key corresponding to ID∗. Finally, during Transfer, the server encrypts any Dj under the

identifier string IDs:j : the client decrypts it if (and only if) it holds the IBE private key corresponding

to IDs:j .

This is somehow similar to IBE-OSBE, explored in [111]. However, in IBE-OSBE, the

use of anonymous IBE to achieve key-privacy (in the sense of [13]) is optional. Whereas, this is
1We refer to Section 2.2 for details on IBE. Anonymous-IBE [22] additionally requires that a computationally bounded

adversary cannot infer any information, from only a ciphertext, about the public key string used to encrypt.
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a fundamental requirement in our scheme: an adversary who correctly guesses the encryption key

used to generate a ciphertext would immediately violate server privacy.

Realizing PPIT from any Anonymous IBE system would let the client perform a number

of decryption linear in the number of server’s records. We now show a PPIT instantiation that uses

a specific IBE system (i.e., Boneh and Franklin IBE [21], introduced in Chapter 2.2) and reduces

client’s computation to O(1), using a tagging technique. Proofs appear in Section 4.7.

Setup. On input of security parameter τ , CA generates a prime q, two groups G1,G2 of order q,

a bilinear map ê : G1 × G1 → G2. Then a random s ∈ Z∗q , a random generator P ∈ G1, P are

chosen and Q is set such that Q = sP . (P,Q) are public parameters, s is CA’s private master key.

Finally, three cryptographic hash function, H1 : {0, 1}∗ → G1 and H2 : G2 → {0, 1}τ are chosen.

Authorize. To issue an authorization on ID∗ to a client, CA issues σ = s ·H1(ID
∗).

Transfer. This protocol is between a client a the server, where public input is (P,Q), and client’s

private input is (ID∗, σ), while server’s is I =
{

(IDs:j ,Dj)|IDs:j ∈ {0, 1}l
}w
i=1

. The resulting

protocol is illustrated in Figure 4.3.

[Common input: P,Q,G1,G2, ê, H1(·), H2(·)]

Client, on input: (ID∗, σ) Server, on input: I, where

I = {(IDs:1,D1), . . . , (IDs:w,Dw)}

z ←r G1, Z = zP

For j = 1, . . . , w:

Ks:j = ê(Q,H1(IDs:j))
z

Ts:j = H2(Ks:j), ks:j = H3(Ks:j)

CTs:j = Encks:j (Dj)
Z, {Ts:1, . . . , Ts:w}

{CTs:1, . . . , CTs:w}
oo

Kc = ê(Z, σ)

Tc = H2(Kc), kc = H3(Kc)

If ∃ Ts:j s.t. Ts:j = Tc, then

D∗ = Deckc(CTs:j)

Output: (ID∗,D∗)

[All computation is mod q]

Figure 4.3: Our IBE-PPIT instantiation.
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To see that IBE-PPIT is correct, observe that, if ID∗ = IDs:j , then:

Ks:j = ê(Q,H1(IDs:j))
z = ê(sP,H1(IDs:j))

z = ê(zP,H1(IDs:j))
s

= ê(Z, s·H1(IDs:j)) = ê(Z, σ) = Kc (4.3)

Thus, Ts:j = H2(Ks:j) = H2(Kc) = Tc:i (similarly Ks:j = Kc).

We acknowledge, that re-use of randomness z for each tag in the IBE scheme is similar

to [23]. However, our approach provides multi-encryption (i.e., encryption of different messages)

instead of broadcast encryption [61]. Moreover, we embed the tags to reduce the number of decryp-

tions to O(1).

Protocol Complexity. The protocol in Figure 4.3 is one-round and incurs linear computation and

communication complexity. The server performs linear computation: its overhead is dominated by

O(w) modular exponentiations and bilinear map pairings. Client computation is O(1). Whereas,

communication overhead amounts to w ciphertexts and hash values, transmitted from the server to

the client.

4.6 Discussion

This section introduces additional (optional) security/privacy requirements for PPIT. It

also discusses a PPIT extension where the client batches multiple authorizations into a single PPIT

interaction. Finally, it presents a performance comparison of PPIT instantiations.

4.6.1 Unlinkability and Forward Security

We now introduce the concept of server/client unlinkability in PPIT, as well as forward

security.

Server unlinkability: prevents a malicious client from guessing whether any two interactions

(specifically, any two instances of the Transfer protocol) are related, thus, learning whether or not

the server runs on the same inputs. Formally, we say that a PPIT scheme is server-unlinkable if

no polynomially bounded adversary A can win the following game with probability non-negligibly

higher than 1/2. The game proceeds between A and a challenger Ch:

1) Ch runs (pk, sk)← Setup(1τ ).
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2) A, on input pk, adaptively queries Ch a number q of times on a set of stringsQ = {IDi|IDoj ∈
{0, 1}l}qi=1. For every IDi, Ch responds by giving A a signature σi ← Signsk(IDi).

3) A announces two new identifier strings, (ID0
∗, ID1

∗) /∈ Q, and generates a data record D∗.

4a) Ch executes server’s part of Transfer on public input pk and private inputs (ID0
∗,D∗).

4b) Ch picks one identifier by selecting a random bit b ←r {0, 1}, and executes the server’s part

of Transfer on public input pk and private inputs (IDb
∗,D∗).

5) A outputs b′ (and wins if b′ = b).

Client Unlinkability: prevents a server from learning whether any two interactions are related, and

learning whether the client runs on the same input. If it is not guaranteed, the server may learn

if the client is retrieving the same record or is holding the same CA authorization, over multiple

interactions. Consider the FBI scenario discussed in Section 4.1: although client privacy prevents

the University from learning the identity of the employee under investigation, the University could

still infer that the same employee is under FBI investigation. The adversarial game for client unlink-

ability mirrors that for server unlinkability (with A and Ch playing inverted roles), thus, we omit it

here.

Forward Security:2 guarantees that:

1. An adversary who learns all of server’s data (ID-s and records) cannot violate client privacy

of past (recorded) Transfer interactions. (This is already captured through the notion of client

privacy.)

2. An adversary who learns client’s authorization(s) cannot violate security and server privacy

of past (recorded) Transfer interactions.

We discuss whether our PPIT instantiations support additional privacy requirements discussed above:

• Unlike RSA-PPIT, Schnorr-PPIT does not offer client unlinkability, since the value X = gk

sent by the client stays fixed for a given ID. Whereas, IBE-PPIT is trivially client-unlinkable,

since no message is sent from the client to the server.
2We point out that our forward-security definitions here are only informal, while it is an interesting open problem how

to provide formal definitions and proofs of forward security in the context of PPIT.
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• All PPIT instantiations guarantee server unlinkability, given that server’s randomness is gen-

erated anew for each Transfer execution (specifically, Rs in RSA- and Schnorr-PPIT, and z

in IBE-PPIT).

• We argue that RSA-PPIT provides built-in forward security, while Schnorr-PPIT and IBE-

PPIT schemes do not provide it.

4.6.2 Batched PPIT for Multiple Client Authorizations

Thus far, we have modeled PPIT as a functionality between a server, on input a set of

records, and a client, on input one (alleged) authorization. Nonetheless, we now consider whether

or not PPIT can be efficiently extended to support client with multiple authorizations. We now

discuss a modified setting and sketch an extension for all PPIT instantiations.

The client runs on input

Σ =
{

(IDc:i, σi) | IDc:i ∈ {0, 1}l ∧ Vrfypk(IDc:i, σi) = 1
}v
i=1

,

i.e., the set of v pairs defining a record identifier along with the corresponding authorization.

We claim that this extension has no effect on our security model or on our proofs, however,

it might impact protocol efficiency. To ease presentation, we first discuss the PPIT variant for

multiple authorizations using IBE-PPIT. Next, we focus on RSA- and Schnorr-PPIT.

IBE-PPIT. The protocol in Figure 4.3 can be adapted, almost with no modification, to the scenario

with client’s multiple authorizations. Transfer in IBE-PPIT is a one-round interaction where no

information is sent from client to server. Record encryption keys, as well as the tags, do not depend

on any input sent by the client. As a result, we only need to modify the protocol as follows: the client

now computes, for each (IDc:i, σi) ∈ Σ, Kc:i = ê(Z, σi), as well as Tc:i = H2(Kc:i) and kc:i =

H3(Kc:i) and decrypts all the records with a matching tag. Server computation and bandwidth

utilization remains linear in the number of server records, i.e., O(w), while client computation is

linear in the number of authorizations, i.e., O(v).

RSA-PPIT and Schnorr-PPIT. In all corresponding PPIT instantiations, the server computes a

Diffie-Hellman key for each record. This key is computed based on (i) record identifiers, and (ii)

client’s message containing the blinded (alleged) authorization. Thus, if we extend to v authoriza-

tions, the client would send v messages, and the server would compute (w · v) Diffie-Hellman keys.

For instance, in RSA-PPIT, the client would send µi = (σi
2 · gRc:i) for every i = 1, . . . , v, and the
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server would compute Ks:ij = ((µi)
eRs ·H1(IDs:j)

−2Rs), for i = 1, . . . , v and j = 1, . . . , w. This

would result in to O(w · v) server computation overhead, as well as O(w · v) bandwidth utilization.

Clearly, quadratic number of modular exponentiations performed by the server prompts

some scalability concerns. Therefore, we now propose a technique to reduce the number of expo-

nentiations to linear, i.e.,O(w+v). We note that, in RSA-PPIT, the server can compute, separately:

(i) (µi)
eRs , and (ii) H1(IDs:j)

−2Rs , thus, performing (w + v) modular exponentiations and (w · v)

modular multiplications. If pre-computation is allowed, the server can pre-compute H1(IDs:j)
−2Rs

exponentiations.

Whereas, to the best of our knowledge, it is not possible to reduce server computational

overhead for Schnorr-PPIT.

4.6.3 Performance Analysis

We now compare performance of proposed PPIT schemes. We focus on the extended

setting where the client holds multiple authorization. Table 4.1 summarizes, for each instantiation,

the communication and (server/client) computation overhead, as well as the computational assump-

tions under which they are secure. We also recap their additional security features. Server and

client computation is measured in terms of public-key operations, i.e., exponentiations in the case

of RSA-PPIT and Schnorr-PPIT, and bilinear map operations in the case of IBE-PPIT. However, for

server operations in RSA-PPIT, we distinguish between exponentiations and multiplications. Recall

that w is the number of records stored by the server, and v – the number of authorizations held by

the client.

IBE-PPIT is the most efficient by all counts, since it: (1) takes one round, (2) requires a

linear number of public key operations for both server and client, and (3) consumes linear amount

of bandwidth. Whereas, both Schnorr-PPIT and RSA-PPIT are two-round protocols. Schnorr-

PPIT has quadratic – O(w · v) – computation and bandwidth overheads, while RSA-PPIT requires

O(w + v) exponentiations and O(w · v) multiplications on the server.

However, in the standard PPIT setting, or whenever the client runs on a small number

of authorizations, Schnorr-PPIT and RSA-PPIT are faster because they use less expensive opera-

tions (modular exponentiations versus bilinear maps). Specifically, aiming at 80-bit security, the

dominant cost factor varies with the scheme (in increasing order): (1) in Schnorr-PPIT, it is 160-bit

exponentiations mod 1024-bit moduli, (2) in RSA-PPIT, it is 1024-bit exponentiations mod 1024-bit

moduli, and (3) in IBE-PPIT, it is bilinear map pairings on 160-bit order groups.
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RSA-PPIT Schnorr-PPIT IBE-PPIT

Rounds 2 2 1

Server Computation O(w + v) exps O(w · v) O(w)

O(w · v) mults

Client Computation O(v) O(v) O(v)

Communication O(w · v) O(w · v) O(w)

Assumption RSA GDH BDH

Client Unlinkability Yes No Yes

Server Unlinkability Yes Yes Yes

Forward Security Yes No No

Table 4.1: Performance Comparison of PPIT Instantiations.

In conclusion, proposed PPIT constructions offer different computation/communication

complexities and additional privacy features. Also, their security holds under different computation

assumptions.

4.7 Proofs

This section concludes the chapter with proofs of proposed PPIT instantiations.

4.7.1 RSA-PPIT Proofs

RSA-PPIT in Figure 4.1 is secure, server- and client-private under the RSA assumption

on safe RSA moduli and the GDH assumption (introduced in Chapter 2.3), in the Random Oracle

Model, given semantically secure symmetric encryption.

Security and Server Privacy. To ease presentation, we first prove the security and server privacy

in a setting where w = 1, i.e., the server runs on a single input record (ID,D). Next, we show how

to easily generalize to the proof for multiple records. We start by showing that no efficientA (acting

as a client) has a non-negligible advantage over 1/2 against Ch in the following game:

1. Ch executes (pk, sk)← Setup(1τ ) and gives pk to A.

2. A invokes Authorize on any IDi of its choice (a polynomial number of times) and obtains the

corresponding signature σi.
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3. A generates ID∗0, ID∗1 and two equal-length data records D0
∗,D1

∗.

4. A participates in Transfer as a client with message µ∗.

5. Ch selects one record pair by selecting a random bit b and executes the server’s part of

Transfer on public input pk and private inputs (ID∗b ,Db
∗) with message (Z,CT, T ).

6. A outputs b′ and wins if b = b′.

Let HQuery be an event that A ever queries H2 on input K∗, where K∗ is defined (as

the combination of message µ∗ sent by A and message Z sent by Ch), as follows: K∗ = (µ∗)eRs ·
(h∗)−2Rs mod N , where Z = geRs and h∗ = H1(ID

∗). In other words, HQuery is an event that A
computes (and enters into hash function H2) the key-material K∗ for the challenging protocol.

[Claim 1]. Unless HQuery happens, A’s view of interaction with Ch on bit b = 0 is indistinguish-

able from A’s view of the interaction with Ch on bit b = 1.

Since the distribution of R = gez is independent from (IDb,Db), it reveals no information

about which of (IDb,Db) is related in the protocol. Since PPIT uses a semantically secure symmetric

encryption, the distribution with b = 0 is indistinguishable from that with b = 1, unlessA computes

k∗ = H2(K
∗), in the random oracle model, by querying H2, i.e., HQuery.

[Claim 2]. If event HQuery happens with non-negligible probability, then A can be used to violate

the RSA assumption.

We describe a reduction algorithm called RCh using a modified challenger algorithm.

Given the RSA challenge (N, e, α), RCh sets the public key as (N, e, g) where g is a generator of

QRN . RCh simulates signatures on each IDi by assigningH1(IDi) as σie mod N for some random

value σi. In this wayRCh can present the certificate of IDi as σi. RCh embeds α to eachH1 query,

by setting H1(IDi) = α(ai)
e for random ai ∈ ZN . Given (H1(IDi))

d for any IDi the simulator can

extract αd = (H1(IDi))
d/ai.

We describe howRCh responds toA during Transfer and howRCh computes (H1(IDi))
d

for certain IDi. OnA’s input message µ∗,RCh picks a randomm← ZN/4, computesZ = g(1+em),

and sends Z, arandom encryption CT , and a random T to A. We remark that g1+em = ge(d+m).

On the HQuery event, RCh gets K∗ = (µ∗)e(d+m)(h∗)−2(d+m) fromA. Since RCh knows µ∗, h∗,

e, and m, RCh can compute (h∗)2d. Since gcd(2, e) = 1, computing (h∗)2d leads to computing

(h∗)d.

We now extend to the setting where w > 1, i.e., the server holds more than a single

record. The game is the same as above, except the adversary challenges the protocol on two pairs of
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input vectors (
−→
ID∗0,
−→
D∗0), (

−→
ID∗1,
−→
D∗1), instead of (ID∗0,D

∗
0), (ID∗1,D

∗
1). Namely, we demonstrate that no

efficient A (acting as a client) has a non-negligible advantage over 1/2 against Ch in the following

game:

1. Ch executes (pk, sk)← Setup(1τ ) and gives pk to A.

2. A invokes Authorize on IDs:j of its choice and obtains the corresponding signature σj .

3. A generates two ID vectors:
−→
ID∗0 = {ID0j}j=1,...,w,

−→
ID∗1 = {ID1j}j=1,...,w,

and two corresponding record vectors
−→
D∗0 = {D0j}j=1,...,w,

−→
D∗1 = {D1j}j=1,...,w.

4. A participates in Transfer as a client with message µ∗.

5. Ch selects one record pair by selecting a random bit b and executes the server’s part of

Transfer on public input pk and private inputs (
−→
ID∗b ,
−→
D∗b) with message (Z,CT, T ).

6. A outputs b′ and wins if b = b′.

We define HQuery the same event as above. By the hybrid argument, if the adversary wins the above

game with a non-negligible advantage over 1/2, HQuery happens on at least one pair (ID∗bj ,D
∗
bj) out

of (
−→
ID∗b ,
−→
D∗b ). Using this adversary, we can build a reduction algorithm to break the RSA assumption,

by the same argument as described above.

Client Privacy. In the following description, we use U ≈S V to denote that distribution U is

statistically close to V in the sense that the difference between these distributions is at most O(2τ ).

We show that {h2dgRc}Rc←ZN/4 ≈S QRN . Take any h ∈ Z∗N and compute σ = hd mod N . (Note

that since N − (p′q′) is on the order of
√
N , which is negligible compared to N , the distribution of

h chosen in ZN is statistically close to uniform in Z∗N .) Since multiplication by h2d is a permutation

in QRN , we have

{h2dgRc}Rc←Zp′q′ ≡ QRN .

Since ZN/4 ≈S Zp′q′ , the above implies that

{h2dgRc}Rc←ZN/4 ≈S QRN .
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4.7.2 Schnorr-PPIT Proofs

Schnorr-PPIT in Figure 4.2 is secure, server- and client-private under the GDH assump-

tion (introduced in Chapter 2.3) in the Random Oracle Model, given semantically secure symmetric

encryption.

Security and Server Privacy. To ease presentation, we first prove the security and server privacy

in a setting where w = 1, i.e., the server runs on a single input record (ID,D). Next, we show how

to easily generalize to the proof for multiple records. We start by showing that no efficientA (acting

as a client) has a non-negligible advantage over 1/2 against Ch in the same game as in RSA-PPIT

security and server privacy, except that now A sends X∗ instead of µ∗.

Let HQuery be an event that A ever queries H2 on input K∗, where K∗ is defined via

the combination of the message X∗ sent by A and message R sent by Ch, as follows: K∗ =

(X∗)Rs · (y)cRs mod p, where R = gRs and c = H1(i,X
∗).

[Claim 3]: Unless HQuery happens, A’s view of the interaction with the challenger on bit b = 0 is

indistinguishable from A’s view of the interaction with the challenger on bit b = 1.

[Claim 4]: If event HQuery happens with non-negligible probability, then A can be used to break

the CDH assumption.

We describe a reduction algorithm called RCh using a modified challenger algorithm.

The goal of a CDH problem on (p, q, g, y = ga, R = gRs) is to compute gaRs mod p. RCh takes

(p, q, g, y = ga) as its public key and simulates the signatures (Xi, si) on each IDi by taking random

si, ei and computing Xi = gsi · yei and assigning H1(i,Xi) to ei. Since the verification equation

is satisfied and si, ei are picked at random, this is indistinguishable from receiving real signatures.

In the protocol on A’s input X∗, RCh responds with R = gRs and random encryption CT and

random T .

Assume that HQuery happens, which can be detected by querying to DDH oracle on

(g,X∗ · ye, gRs , QH) for every query input QH to H1. Then, as in the forking lemma argument

of [134], we know that A can be executed twice in a row with the same value X = gk mod p and

different hash values such that (e 6= e′) andAwins both games with non-negligible probability of at

least ε
2

qh
, where qH is the number of queries A makes to the hash function. This means, A can com-

pute with non-negligible probability the values K = gRs(ea+k) mod p and K ′ = gRs(e
′a+k) mod p

with e 6= e′. Consequently, A can also efficiently compute gaRs :

(K/K ′)(e−e
′)−1

= (gRsea−Rse
′a)(e−e

′)−1
= (gRsa(e−e

′
)(e−e

′)−1
= gaRs mod p.
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We now extend to the setting where w > 1, i.e., the server holds more than a single

records. The game is the same as above, except that A selects two pairs of (
−→
ID∗0,
−→
D∗0), (

−→
ID∗1,
−→
D∗1), in-

stead of (ID∗0,D
∗
0), (ID∗1,D

∗
1). We define HQuery the same event as above. By the hybrid argument,

if the adversary wins the above game with a non-negligible advantage over 1/2, HQuery happens

on at least one pair (ID∗bj ,D
∗
bj) out of (

−→
ID∗b ,
−→
D∗b). Using this adversary, we can build a reduction

algorithm to break the GDH assumption, by the same argument as described above.

Client Privacy. Client privacy is easy to show since X = gk for random k is independent from

any ID value.

4.7.3 IBE-PPIT

IBE-PPIT in Figure 4.3 is secure, server- and client-private if the underlying IBE scheme,

i.e., [21], is semantically secure and key-private under selective ID attack.

Security and Server Privacy. Assuming an underlying IBE system semantically secure under a

chosen plaintext attack, such as [21], the resulting PPIT scheme is secure against malicious client.

We prove this claim by contradiction. Assuming our claim is not true, then there exists a polynomial-

bounded adversary A that wins the security game presented in Section 4.2. A is given pk = ID and

the IBE-encryption of D under the key pk but not the corresponding sk. If A decrypts D with

non-negligible probability, then we can construct a polynomial-bounded adversary B that uses A to

break the CPA-security of IBE. This contradicts our assumption.

Finally, server privacy is trivially achieved if the underlying IBE scheme is key-private.

We stress that the use of key tags to reduce the number of client’s decryptions do not

affect the security and privacy of the scheme assuming the security of Boneh and Franklin’s IBE

instantiation [21]. Key tags are nothing but bilinear maps operations as in BF-IBE. Hence, we claim

that if the tags give any advantage to the adversary then there exists another polynomial-bounded

adversary that breaks the security of BF-IBE, again, contradicting our assumption. As the re-use

of randomness z (as described in Figure 4.3) has been proved to be CPA-secure in [23], we omit

formal reductions here to ease presentation.

Client Privacy. Client privacy is trivial since the server does not receive any information from

client during Transfer.
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Chapter 5

Linear-Complexity Private Set

Intersection Protocols

In this chapter, we propose several Private Set Intersection (PSI) protocols, secure in the

presence of semi-honest adversaries, that are appreciably more efficient than state-of-the-

art. We introduce the notion of Authorized Private Set Intersection (APSI) and show how

some PPIT instantiations, presented in the previous chapter, can be adapted to APSI. We

then construct an improved APSI protocol and shows how to derive efficient PSI. Finally,

we propose an even more efficient PSI protocol geared for scenarios where the server can

perform some pre-computation and/or the client has limited computational resources.

5.1 From PPIT to PSI, via APSI

The previous chapter presented Policy-based Information Transfer (PPIT) – a crypto-

graphic tool that lets a client obtain information from a server, in a private and policy-guided (au-

thorized) manner. It is geared for the case where the client is interested in a single record, while the

server holds many database records.

In this chapter, we focus on PSI protocols. PSI involves two participants, a server and a

client, each on input a private set, and lets the client learn the set intersection, while the server learns

nothing. We also introduce an authorized variant, that we call Authorized Private Set Intersection

(APSI): in APSI, each item in client set must be authorized (i.e., signed) by some recognized and
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mutually trusted authority.

Another natural PSI extension is what we call PSI with Data Transfer or PSI-DT. In it,

the server has some data associated with each item in its set, e.g., a database record. Therefore,

the client, along with the set intersection, also obtains data records associated with each item in

the intersection. Interestingly, we show that some previously-discussed PPIT instantiations, in fact,

provide APSI-DT for the case where one participant (the client) has a set of size one.

In contrast to prior work, we do not start with constructing PSI protocols and piling on

extra features later. Instead, we start from PPIT and show that RSA-PPIT (Section 4.3) can be

trivially extended into inefficient PSI and APSI protocols, with and without data transfer. We then

construct several efficient (and less trivial) provably secure PSI and APSI protocols that incur linear

computation and communication overhead, and are appreciably more efficient than current state-of-

the-art. Next, we construct another, even more efficient, PSI protocol geared for scenarios where

the server can perform some pre-computation and/or the client is computationally weak. Protocols

in this chapter achieve security in the presence of semi-honest adversaries. In Chapter 6, we extend

them to offer security in the malicious adversary model.

5.2 Definitions

In this section, we present our definitions for PSI functionality, as well as for APSI and

PSI with Data Transfer (PSI-DT).

Definition 5.1 (Private Set Intersection (PSI)). It involves a server and a client, on input S =

{s1, . . . , sw} and C = {c1, . . . , cv}, respectively. It results in the client outputting S ∩ C. PSI

securely implements the functionality: FPSI : ((S, v), (C, w)) 7→ (⊥,S ∩ C).

Definition 5.2 (Authorized Private Set Intersection (APSI)). It involves a server and a client,

on input S = {s1, . . . , sw} and C = {(c1, σ1), . . . , (cv, σv)}, respectively. It results in the client

outputting ASI
def
= {sj ∈ S | ∃ (ci, σi) ∈ C s.t. ci = sj ∧ Vrfypk(σi, ci) = 1}, where pk is the public

key of an (offline) trusted authority (denoted as CA). APSI securely implements the functionality:

FAPSI : ((S, v), (C, w)) 7→ (⊥,ASI).

Privacy Properties. Definitions above use the standard secure computation formulation [77] and

capture privacy guarantees provided by the functionalities. Nonetheless, for the sake of clarity, we

also provide an informal (yet concise) discussion of (A)PSI privacy features.
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• Correctness. At the end of the protocol, the client outputs the exact (possibly empty) inter-

section of the two respective sets.

• Server Privacy. The client learns no information (except the size) about the subset of server

items that are NOT in the intersection of their respective sets.

• Client Privacy. No information is leaked about client set items to a malicious server, except

set size.

• Unlinkability (Optional). Unlinkability guarantees that a malicious server (resp., client) can-

not tell if any two protocol instances are related, i.e., executed on the same inputs by the client

(resp., server).

For APSI, server privacy is amended as follows:

• Server Privacy (APSI). The client learns no information (except the size) about the subset of

server items that are NOT in the intersection of their respective sets, for which the client does

not hold a valid authorization.

Finally, we consider the following extension:

Definition 5.3 (Private Set Intersection with Data Transfer (PSI-DT)). It involves a server and

a client, on input S = {(s1, data1), . . . , (sw, dataw)} and C = {c1, . . . , cv}, respectively. It results

in the client outputting SI-DT
def
= {(sj , dataj) ∈ S | ∃ ci ∈ C s.t. ci = sj}. PSI-DT securely

implements the functionality: FPSI−DT : ((S, v), (C, w)) 7→ (⊥,SI-DT).

Also, APSI can naturally be extended to a Authorized Private Set Intersection with Data

Transfer (APSI-DT) variant. Since this extension mirrors its PSI counterpart, we omit it here to ease

presentation.

5.3 Designing Efficient Private Set Intersection Protocols

This section presents our efficient (linear-complexity) APSI and PSI protocols.

5.3.1 Baseline: APSI from PPIT

The starting point for our design is an APSI protocol derived from RSA-PPIT, introduced

in Section 4.3. Since our new protocols are loosely based on it, we specify it in Figure 5.1.
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[Common input: N, e, g,H1(·), H2(·)]

Client, on input: C = {(c1, σ1), . . . , (cv, σv)}, Server, on input: S = {s1, . . . , sw}
where ∀i σi = H1(ci)

d mod N

For i = 1, . . . , v:

Rc:i ←r ZN/4
Mi = σi

2 · gRc:i {M1, . . . ,Mv}
// (ŝ1, . . . , ŝw)← Π(S)

Rs ←r ZN/4, Z = geRs

For i = 1, . . . , v, j = 1, . . . , w :

Ks:ij = (Mi)
eRs ·H1(ŝj)

−2Rs

Ts:ij = H2(Ks:ij)
Z, {Ts:11, . . . , Ts:vw}

For i = 1, . . . , v: oo

Kc:i = ZRc:i

Tc:i = H2(Kc:i)

Output: {ci | ci ∈ C and ∃ Ts:ij s.t. Ts:ij = Tc:i}

[All computation is mod N ]

Figure 5.1: APSI protocol derived from RSA-PPIT.

Similar to RSA-PPIT, an (offline) trusted authority, CA, generates the RSA parameters,

i.e., (N, e, d), at setup time. (N, e) are published, alongside two cryptographic hash functions

(modeled as random oracles) i.e., H1 : {0, 1}∗ → ZN (full-domain hash) and H2 : {0, 1}∗ →
{0, 1}τ , and and a generator g ofQRN . CA’s secret key is d. In order to obtain an authorization on a

given item ci, the client interacts with CA and receives an RSA signature on ci, i.e.,H1(ci)
d mod N .

Finally, note that the server uses a random permutation Π(·) over set S. The goal is to

prevent the client from inferring additional information over S in case it has some knowledge on

the order of items in S.

Correctness. The APSI protocol in Figure 5.1 is correct, since: for any (σi, ci) held by the client

and ŝj held by the server, if: (1) σi is a genuine CA’s signature on ci, and (2) ci = ŝj :

Ks:ij = (Mi)
eRs ·H1(ŝj)

−2Rs = (σ2i · gRc:i)eRs ·H1(ŝj)
−2Rs =

= H1(ci)
2Rs · geRs· Rc:i ·H1(ŝj)

−2Rs = geRs· Rc:i = ZRc:i = Kc:i (5.1)

Thus, Ts:ij = H2(Ks:ij) = H2(Kc:i) = Tc:i.
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Protocol Complexity. The protocol in Figure 5.1 incurs linear (O(v)) computation complexity at

client side and quadratic (O(w·v)) computation overhead at server side. Communication complexity

is also quadratic (O(w · v)). However, we can reduce the number of on-line exponentiations on the

server from O(w · v) to O(w + v). The server can compute, separately, H1(ŝj)
−2Rs and (Mi)

eRs .

However, the number of modular multiplications, as well as the communication overhead, would

still be quadratic.

5.3.2 APSI with Linear Costs

The trivial derivation of APSI from RSA-PPIT is relatively inefficient. We now show how

to use it to derive an improved protocol, presented in Figure 5.2.

[Common input: N, e, g,H1(·), H2(·)]

Client, on input: C = {(c1, σ1), . . . , (cv, σv)}, Server, on input: S = {s1, . . . , sw}
where ∀i σi = H1(ci)

d mod N

Rc ←r ZN/4, X = gRc

For i = 1, . . . , v :

Rc:i ←r ZN/4
Mi = σi

2 · gRc:i X, {M1, . . . ,Mv}
// (ŝ1, . . . , ŝw)← Π(S)

Rs ←r ZN/4, Z = geRs

For i = 1, . . . , v :

M ′i = (Mi)
eRs

For j = 1, . . . , w :

Ks:j = (Xe ·H1(ŝj)
2)Rs

Ts:j = H2(Ks:j)
Z, {Ts:1, . . . , Ts:w},oo
{M ′1, . . . ,M ′v}

For i = 1, . . . , v :

Kc:i = M ′i · ZRc · Z−Rc:i

Tc:i = H2(Kc:i)

Output: {ci | ci ∈ C and ∃ Ts:j s.t. Ts:j = Tc:i}

[All computation is mod N ]

Figure 5.2: New APSI protocol with linear complexities.

Similar to the APSI protocol derived from RSA-PPIT, we assume that an (offline) trusted authority,
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CA, generates RSA parameters at setup time. (N, e) are published, alongside two cryptographic

hash functions (modeled as random oracles) i.e., H1 : {0, 1}∗ → ZN (full-domain hash) and

H2 : {0, 1}∗ → {0, 1}τ , and and a generator g of QRN . CA’s secret key is d. Again, the server

uses a random permutation Π(·) over set S, in order to prevent the client from inferring additional

information over S in case it has some knowledge on the order of items in S.

Correctness. The APSI protocol in Figure 5.2 is correct, since: for any (σi, ci) held by the client

and ŝj held by the server, if: (1) σi is a genuine CA’s signature on ci, and (2) ci = ŝj :

Kc:i =M ′i · ZRc · Z−Rc:i = (Mi)
eRs · geRcRs · g−eRsRc:i = (σi

2 · gRc:i)eRs · geRcRs · g−eRsRc:i =

=H1(ci)
2Rs · geRcRs = XeRs ·H1(ŝj)

2Rs = Ks:j (5.2)

Thus, Ts:j = H2(Ks:j) = H2(Kc:i) = Tc:i.

Protocol Complexity. The protocol in Figure 5.2 incurs linear computation (for both participants)

and communication complexity. Specifically, the client performs O(v) exponentiations and the

server – O(w + v). Communication is dominated by server’s reply – O(w + v).

Security. We intentionally omit security proofs for the APSI protocol in Figure 5.2. In fact, in

Chapter 6, we will show how this APSI protocol (with semi-honest security) can be extended to

achieve security in the presence of malicious adversaries (under the RSA and DDH assumption in

ROM). Nonetheless, [52] presents formal proofs for the APSI protocol in Figure 5.2 (relying on the

RSA assumption in ROM).

5.3.3 Deriving Efficient PSI

We now convert the above APSI protocol into PSI. In doing so, the main change is the

obviated need for the RSA setting. Instead, the protocol operates in Zp, where p is a large prime,

and selects random exponents from a subgroup of size q, where q|p − 1. This change makes the

protocol more efficient, especially, because of smaller exponents (e.g., |q|=160 bits).

We assume that the protocol runs on public input p, q, g (where g is a generator of the

subgroup of order q), and two cryptographic hash functions (modeled as random oracles), H1 :

{0, 1}∗ → Z∗p and H2 : {0, 1}∗ → {0, 1}τ . Once again, the server uses a random permutation Π(·)
over set S, in order to prevent the client from inferring additional information over S in case it has

some knowledge on the order of items in S.
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The basic complexity of the resulting protocol remains the same: linear communication

and computational overhead (specifically, O(w + v), for the server and O(v) for the client). How-

ever, if the server can pre-compute all values of the form: H1(ŝj)
Rs , the cost of computing all

Ks:j values can be reduced to O(w) multiplications (from O(w) exponentiations). (The same op-

timization applies to the APSI protocol in Figure 5.2). The resulting PSI construct is illustrated in

Figure 5.3:

[Common input: p, q, g,H1(·), H2(·)]
Client, on input: C = {c1, . . . , cv} Server, on input: S = {s1, . . . , sw}

Rc ←r Zq , X = gRc

For i = 1, . . . , v :

Rc:i ←r Zq
Mi = H1(ci) · gRc:i X, {M1, . . . ,Mv}

// (ŝ1, . . . , ŝw)← Π(S)

Rs ←r Zq , Z = gRs

For i = 1, . . . , v :

M ′i = (Mi)
Rs

For j = 1, . . . , w :

Ks:j = (X ·H1(ŝj))
Rs

Ts:j = H2(Ks:j)
Z, {Ts:1, . . . , Ts:w},oo
{M ′1, . . . ,M ′v}

For i = 1, . . . , v :

Kc:i = M ′i · ZRc · Z−Rc:i

Tc:i = H2(Kc:i)

Output: {ci | ci ∈ C and ∃ Ts:j s.t. Ts:j = Tc:i}

[All computation is mod p]

Figure 5.3: PSI protocol with linear complexities.

Correctness. Similar to its APSI counterpart, it is easy to see that the PSI protocol in Figure 5.3 is

correct, since: for any ci held by the client and ŝj held by the server, if ci = ŝj :

Kc:i =M ′i · ZRc · Z−Rc:i = (Mi)
Rs · gRcRs · g−RsRc:i =

=(H1(ci) · gRc:i)Rs · gRcRs · g−RsRc:i = (X ·H1(ŝj))
Rs = Ks:j (5.3)

Thus, Ts:j = H2(Ks:j) = H2(Kc:i) = Tc:i.
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Security. Security proofs for the PSI protocol (with semi-honest security) in Figure 5.3 are in-

tentionally omitted, since in Chapter 6, we will introduce a protocol variant that achieves security

in the presence of malicious adversaries (under the DDH assumption in ROM). Nonetheless, for-

mal proofs can be found in [52]. (Security arguments are based on the One-More Diffie-Hellman

assumption in ROM [14]).

5.4 Efficient PSI based on RSA Blind-Signatures

Although efficient, the PSI protocol in Figure 5.3 is sub-optimal for application scenarios

where the client runs on a resource-poor device, e.g., a PDA or a smartphone. O(v) exponentiations

might still represent a fairly heavy burden. Also, if server set is very large, overhead incurred (at

server side) by O(w) on-line modular exponentiations (or even just O(w) multiplications, if pre-

computation is allowed) might be substantial.

To this end, in Figure 5.4, we present yet another PSI construct, based on RSA Blind

Signatures [38]. In it, the client does not perform any modular exponentiations on-line, only O(v)

modular multiplications. Also, server on-line workload does not depend on the size of its own set.

We assume that, at setup time, the server uses the RSA key generation algorithm, on input

a security parameter τ , to generate (N, e, d). The protocol is then run on public input (N, e), and

two cryptographic hash functions (modeled as random oracles) H1 : {0, 1}∗ → ZN (full-domain

hash) and H2 : {0, 1}∗ → {0, 1}τ , chosen at setup time.

Finally, similar to protocols in Section 5.3, the server needs to use a random permutation

Π(·) over set S. Again, the goal is to prevent the client from inferring additional information over

S in case it has some knowledge on the order of items in S.

Correctness. It is easy to see that this protocol is correct, since: for any ci held by the client and

ŝj held by the server, if ci = ŝj , then:

Kc:i = M ′i ·Rc:i−1 = Mi
d ·Rc:i−1 = (H1(ci) ·Rc:ie)d ·Rc:i−1 =

= H1(ci)
d ·Rc:ied ·Rc:i−1 = H1(ŝj)

d = Ks:j

Thus, Ts:j = H2(Ks:j) = H2(Kc:i) = Tc:i.

Protocol Complexity. Server’s on-line computation overhead is limited to O(v) exponentiations,

while its pre-computation requires O(w) exponentiations, owing to RSA signatures. Note that

RSA keys are generated by the server. By taking advantage of the Chinese Remainder Theorem
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[Common input: N, e,H1(·), H2(·)]
Client, on input: C = {c1, . . . , cv} Server, on input: (S = {s1, . . . , sw}

Offline

(N, e, d)← RSA-KGen(1τ )

(ŝ1, . . . , ŝw)← Π(S)

For j = 1, . . . , w:

Ks:j = H1(ŝj)
d mod N

Ts:j = H2(Ks:j){Ts:1, . . . , Ts:w}
oo

Online

For i = 1, . . . , v:

Rc:i ←r Z∗N
Mi = H1(ci) · (Rc:i)e mod N {M1, . . . ,Mv}

// For i = 1, . . . , v:

M ′i = (Mi)
d mod N

{M ′1, . . . ,M ′v},
oo

For i = 1, . . . , v:

Kc:i = M ′i ·Rc:i
−1 mod N

Tc:i = H2(Kc:i)

Output: {ci | ci ∈ C and ∃ Ts:j s.t. Ts:j = Tc:i}

Figure 5.4: Efficient PSI protocol based on RSA Blind Signatures.

(CRT) [104], server’s exponentiations can be speeded up by a factor of (approximately) 4. Client’s

overhead involves O(v) multiplications, since, as is well-known that, e can be a small integer. Note

that, although this protocol uses the RSA setting, RSA parameters are initialized a priori by the

server. This is in contrast to the protocol in Figure 5.2 where CA sets up RSA parameters.

Protocol Linkability. Although very efficient, PSI protocol in Figure 5.4 has some drawbacks.

First, it is unclear how to extend it to APSI. Second, if pre-computation is impossible, its perfor-

mance becomes comparable to that of the PSI protocol in Figure 5.3, since the latter uses short

exponents both at server and client side. In terms of privacy properties, this protocol lacks server

unlinkability. (Recall that this feature is relevant if the protocol is run multiple times.) The server

computes tags of the form Ts:j = H2(H1(ŝj)
d). Consequently, running the protocol twice allows

the client to observe changes in server set.
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There are several ways of patching the protocol. One is for the server to select a new

set of RSA parameters for each protocol instance. This would be a time-consuming extra step at

the start of the protocol; albeit, with pre-computation, no extra on-line work would be required.

Two additional initial messages would be necessary: one from the client – to “wake up” server,

and the other – from the server to the client bearing the new RSA public key and {Ts:1, .., Ts:w}.
Another simple way of providing server unlinkability is to change the hash function H1, for each

protocol instance. If we assume that the client and the server maintain either a common protocol

counter (monotonically increasing and non-wrapping) or sufficiently synchronized clocks, it is easy

to select/index a distinct hash function based on such unique and common values. One advantage

of this approach is that we no longer need the two extra initial messages.

Proofs of PSI Protocol in Figure 5.4

We start by claiming that the use of different randomness across multiple interactions

(Rc:i-s at client) trivially yields client unlinkability.

Next, proving client privacy is also straightforward. In fact, client inputs to the proto-

col are statistically close to random distribution. Also, privacy directly follows from the security

argument of blind RSA signatures [38].

Finally, we prove server privacy by presenting a concise construction of an ideal (adap-

tive) world SIMc from a honest-but-curious real-world client C∗, and show that the views of C∗

in the real game with the real world server and in the interaction with SIMc are indistinguishable,

under the One-More-RSA assumption in ROM.

First, SIMc runs (N, e, d) ← RSA-Keygen(τ ) and gives (N, e) to C∗. SIMc models the

hash function H1(·) and H2(·) as random oracles. A query to H1(·) is recorded as (q, h = H1(q)),

a query to H2(·) as (k, h′ = H2(k)), where q and h′ are random values. Finally, SIMc creates two

empty sets A,B. During interaction, SIMc publishes the set T = {t1, · · · , tw}, where tj is taken at

random. Also, for everyMi ∈ {M1, · · · ,Mv} received from C∗ (recall thatMi = H1(ci) ·(Rc:i)e),
SIMc answers according to the protocol with (Mi)

d.

We now describe how SIMc answers to queries to H2(·). On query k to H2(·), SIMc

checks whether it has recorded a value h s.t. h = ke (i.e., hd = k).

If !∃h s.t. h = ke, SIMc answers a random value h′ and record (k, h′) as mentioned above.

If ∃h s.t. h = ke, SIMc can recover the q s.t. h = H1(q) and h = ke. Then, it checks whether it has

previously been queried on the value k.
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If ∃k s.t. k has already been queried, then SIMc checks whether q ∈ A. If q /∈ A, it

means that C∗ queried q to H1(·) (which returned h), and also made an independent query k to

H2(·) s.t. h = ke. In this case SIMc aborts the protocol. However, it easy to see that this happens

with negligible probability. Instead, if q ∈ A, SIMc returns the value h′ previously stored for k.

If !∃k s.t. k has already been queried, this means that SIMc is learning one ofC∗’s outputs.

Hence, A = A ∪ {q}. Then, SIMc checks if |A| > v.

If |A| <= v, then SIMc checks if q ∈ C ∩ S by playing the role of the client with the real

world server. If q ∈ C ∩ S , SIMc answers to the query on k with a value tj ∈ T\B, records the

answer (k, tj) and sets B = B ∪ {tj}. If q /∈ C ∩ S , SIMc answers with a random value h′ and

records the answer.

If |A| > v, then we can construct a reduction Red breaking the One-More-RSA assump-

tion. The reduction Red can be constructed as follows. Red answers to C∗’s queries to H1(·)
with RSA challenges (α1, · · · , αch). During interaction, on C∗’s messages Mi ∈ {M1, · · · ,Mv},
Red answers (Mi)

d by querying the RSA Oracle. Finally, if the case discussed above happens, at

the end of the protocol the set B will contain at least (v + 1) elements, where v is the number of

RSA challenges, thus violating the One-More-RSA assumption. As a result, we have shown that

the views of C∗ in the real game with the real world server and in the interaction with SIMc are

indistinguishable.

The structure of the above proof resembles the one by Jarecki and Liu in [100] (reviewed

in Section 3.3.1) with security under the One-More-Gap-DH assumption in ROM. We also re-use

the notion of adaptiveness for PSI, needed to let client adaptively make queries (i.e., client inputs

do not need to be specified all at once).

5.5 Realizing PSI-DT and APSI-DT

We can easily add the data transfer functionality to the protocols in Figures 5.1, 5.2, 5.3,

and 5.4, thus, implement APSI-DT and PSI-DT at no extra asymptotic cost. We assume that an

additional secure cryptographic hash function H3 : {0, 1}∗ → {0, 1}τ is chosen during setup. In

all the protocols proposed in this chapter, we then use H3(·) to derive a symmetric key for a CPA-

secure symmetric cipher, such as AES [45], used in the appropriate mode of operation. For every

j = 1, . . . , w, the server computes ks:j = H3(Ks:j) and encrypts associated data using a distinct

key ks:j . For its part, the client, for every i = 1, . . . , v, computes kc:i = H3(Kc:i) and decrypts

ciphertexts corresponding to the matching tag. (Note that ksj = kci if and only if ŝj = ci and so
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Ts:j = Tc:i). As long as the underlying encryption scheme is CPA-secure, this extension does not

affect security or privacy arguments for any protocol discussed thus far.

5.6 Performance Evaluation

In this section, we highlight the differences between prior PSI techniques (presented in

Section 3.3) and protocols proposed in this chapter. We focus on asymptotic complexities for: (1)

communication overhead and (2) server and client computation (in terms of “expensive” operations,

such as modular exponentiations).

Letw and v denote the number of items in server and client sets, respectively. Letm be the

number of bits needed to represent each item. We distinguish between online and offline operations.

Protocols are compared in Table 5.1, choosing parameters such that all protocols achieve 80-bit

security. The first three rows refer to APSI protocols and the last seven – to PSI. The table also

includes communication overhead.

Protocol Model Communic. Pre-Comp. Server Comput. Client Comput. Mod

[31] Std O(vw) - O(wv) 160-bit O(wv) 160-bit 1024

APSI Fig.5.1 ROM O(vw) O(w) 1024-bit O(v) 1024-bit exps O(v) 1024-bit 1024
O(vw) mults

APSI Fig.5.2 ROM O(w+v) O(w) 512-bit O(v) 512-bit O(v) 512-bit 1024

PSI in [66] Std O(w+v) - O(w log log v)m-bit O(w+v) 160-bit 1024

PSI in [87] Std O(w+v) - O(v+w(log log v)) 160-bit O(w+v) 160-bit 1024

PSI in [108] Std O(w+v) - O(wv) 1024-bit O(wv) 1024-bit 2048

PSI in [98] Std O(w+v) O(w) 1024-bit O(v) 1024-bit O(v)m-bit 2048

PSI in [100] ROM O(w+v) O(w) 160-bit O(v) 160-bit O(v) 160-bit 1024

PSI Fig.5.3 ROM O(w+v) O(w) 160-bit O(v) 160-bit O(v) 160-bit 1024

PSI Fig.5.4 ROM O(w+v) 2·O(w) 512-bit 2·O(v) 512-bit O(v) mults 1024
mod 512-bit mod 512-bit mod 1024-bit

Table 5.1: Performance Comparison of PSI and APSI protocols secure in semi-honest model.

We highlight a few points in Table 5.1:

• Protocols in [31] and [108] provide, respectively, mutual APSI and PSI, without data transfer,

whereas our techniques present one-way (A)PSI techniques with data transfer.

• Some prior work is secure in the presence of malicious adversaries and/or in the standard

model. When analyzing efficiency, we consider—whenever possible—complexity incurred
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by instantiations in semi-honest model and in ROM.

• In APSI of Figure 5.2, we consider random exponents (i.e., Rs, Rc, and Rc:i-s) chosen from

smaller groups than ZN/4 – i.e., 512-bit instead of 1024-bit exponents. Although a formal

proof of security equivalence is left as part of future work, we rely on arguments from [80, 72].

• Modular exponentiations at server-side in the protocol of Figure 5.4 employ smaller expo-

nents/moduli, using the Chinese Remainder Theorem (CRT) [104]. This is possible since the

server generates the RSA parameters.
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Chapter 6

Private Set Intersection with Linear

Complexities Secure in the Malicious

Model

In this chapter, we construct PSI and APSI protocols secure in the malicious model under

standard cryptographic assumptions, with both linear communication and computational

complexities. Proposed APSI protocol is the first of its kind. Whereas, the new PSI construct

is appreciably more efficient than the state-of-the-art.

6.1 Security in the Malicious Model for Private Set Intersection

PSI protocols presented in Chapter 5 combine efficiency with provable security guaran-

tees, albeit they only consider semi-honest adversaries. Recall (from Section 2.5) that semi-honest

players are assumed to faithfully follow all protocol specifications and not to misrepresent any

information related to their inputs, e.g., set size and content. However, during or after protocol ex-

ecution, they might (passively) attempt to infer additional information about the other participant’s

input. This model is formalized by considering an ideal implementation where a Trusted Third Party

(TTP) receives the inputs of both participants and outputs the result of the defined function. Security

in the presence of semi-honest adversaries requires that, in the real implementation of the protocol

(without a TTP), each participant does not learn more information than in the ideal implementation.
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Therefore, the actual “degree” of security provided by PSI protocols secure against semi-

honest adversaries may depend on the specific setting. For example, it may also be reasonable to

consider only semi-honest adversaries if participants are subject to auditing and could face severe

penalties for non-compliance. In semi-honest model, security focuses on privacy guarantees: the

client cannot learn any information about the server’s set, beyond the intersection, while the server

learns nothing about client’s set. This notion is usually referred to as input privacy.

However, when players are “allowed” to deviate, protocol correctness may be affected.

Ideally, the output of an honest player should depend only on its input and implicit input used by

the adversary. Whereas, it is unclear whether a malicious adversary, even without violating other

player’s input privacy, can violate protocol correctness. For instance, can the server, in PSI, force

the client’s output to always include the first item in set inputted by the client? If this happens, the

protocol fails to guarantee correctness and, arguably, privacy of client’s output.

In contrast, the classic formulation of security in the malicious model involves realizing

an ideal functionality, that, in turn, requires (1) simulation of any real-world attack into an ideal-

world attack, and (2) that outputs of honest players should not differ in the two worlds. Therefore,

security in the malicious model captures, simultaneously, correctness and simulation [62], and thus

provides the same security as general two-party computation.

Security in the presence of malicious adversaries, however, does not prevent them from

refusing to participate in the protocol, modifying their private input sets, or prematurely aborting

the protocol. Thus, we still need mechanisms to enforce authorization of inputs. This motivates the

need for malicious-secure protocols for APSI.

Roadmap

As discussed in Sections 3.3 several PSI and APSI protocols have been proposed, that

are secure in the malicious model [108, 85, 44, 31, 27, 87, 100]. Only [98] constructed linear-

complexity PSI in the malicious setting under standard assumptions, whereas, [100] is (adaptively)

secure under the OneMore-Gap-DH assumption [14]. Also note that proofs in [98] require the do-

main of inputs to be restricted to polynomial in the security parameter. [98] also requires a Common

Reference String model (CRS) — where the reference string, including a safe RSA modulus, must

be generated by a mutually trusted third party.

Our starting point are linear-complexity protocols in Chapter 5, that are secure only in

semi-honest model. First, we modify the APSI construct in Section 5.3.2 and obtain APSI secure in
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the malicious model, under the standard RSA (and DDH) assumption (in ROM). Then, we modify

its PSI counterpart (from Section 5.3.3): while the linear-complexity PSI protocol in [52] is se-

cure under the One-More-Gap-DH assumption [14] against semi-honest adversaries, our modified

variant is secure in the malicious model under the standard DDH assumption (again, in ROM). We

present formal proofs for all proposed protocols.

6.2 Linear-Complexity APSI Secure in the Malicious Model

We now present our protocol for secure computation of authorized set intersection. First,

we review the definition of the APSI ideal functionality. APSI employs an (off-line) CA with

algorithms (KGen, Sign, Vrfy). The CA generates a key-pair (sk, pk)← KGen, publishes its public

key pk, and, on client input ci, it issues a signature σi = Signsk(ci) such that Vrfypk(σi, ci) = 1.

Definition 6.1. The ideal functionality FAPSI of an APSI protocol between a server, on input S =

{s1, . . . , sw}, and a client, on input C = {(c1, σ1), . . . , (cv, σv)}, is defined as:

FAPSI : ((S, v), (C, w))→ (⊥,ASI)

where ASI
def
= {sj ∈ S | ∃ (ci, σi) ∈ C s.t. ci = sj ∧ Vrfypk(σi, ci) = 1} and pk is CA’s public key.

We start from the APSI protocol presented in Section 5.3.3, secure in the presence of semi-

honest adversaries. We describe a modified version that securely implements the FAPSI functionality

in the presence of malicious adversaries, in ROM, under the RSA and DDH assumptions.

Resulting APSI protocol is illustrated in Figure 6.1. The (off-line) trusted third party

authorizing client’s input (CA) is realized with the following algorithms:

• KGen(1τ ): On input of security parameter τ , this algorithm generates safe RSA modulus

N = pq, where p = 2p′ + 1, q = 2q′ + 1 (with p′, q′ primes), and picks random elements g,

g′, s.t. 〈−1〉 × 〈g〉 ≡ 〈−1〉 × 〈g′〉 ≡ Z∗N . RSA exponents (e, d) are chosen in the standard

way: e is a small prime and d = e−1 mod φ(N). The algorithm also fixes hash functions

H1 : {0, 1}∗ → Z∗N and H2 : Z∗N × Z∗N × {0, 1}∗ → {0, 1}τ . The secret key is (p, q, d) and

the public parameters are: N, e, g, g′, H1(·), H2(·).

• Signsk(·): On input of ci, this algorithm issues an authorization σi = H1(ci)
d mod N .

• Vrfypk(·, ·): On input of (σi, ci), this algorithm verifies whether σie = H1(ci) mod N .
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Also note that the server uses a random permutation Π(·) over set S. The goal is to prevent

the client from inferring additional information over S in case it has some knowledge on the order

of items in S.

[Common input: N, e, g, g′, H1(·), H2(·)]

Client, on input: (C, Cσ), where Server, on input: S = {s1, . . . , sw}
C = {c1, . . . , cv}, Cσ = {σ1, . . . , σv}
(∀i 1 ≤ i ≤ v: σi = H1(ci)

d mod N )

For i = 1, . . . , v:

Rc:i ←r ZN/2, (bi, b̄i)←r {0, 1}×{0, 1}
Mi = (−1)bi · σi · gRc:i

Ni = (−1)b̄i ·H1(ci) · (g′)Rc:i

π = ZK{Rc:i, i = 1, . . . , v |
Mi

2e/Ni
2 = (ge/g′)2Rc:i} {M1, . . . ,Mv}

{N1, . . . , Nv}, π
// If π doesn’t verify, then abort

(ŝ1, . . . , ŝw)← Π(S)

Rs ←r ZN/2, Z = g2eRs

For i = 1, . . . , v

M ′i = (Mi)
2eRs

For j = 1, . . . , w

Ks:j = (H1(ŝj))
2Rs

Ts:j = H2(Ks:j , H1(ŝj), ŝj)

π′ = ZK{Rs | Z = g2eRs

∀i,M ′i = (Mi)
2eRs}

Z, {M ′1, . . . ,M ′v}

{Ts:1, . . . , Ts:w}, π′
oo

If π′ doesn’t verify, then abort

For i = 1, . . . , v:

Kc:i = M ′i · Z−Rc:i

Tc:i = H2(Kc:i, H1(ci), ci)

Output: {ci | ci ∈ C and ∃ Ts:j s.t. Ts:j = Tc:i}

[All Computation is mod N ]

Figure 6.1: APSI protocol with linear complexities secure in the malicious model, in ROM, under

the RSA and DDH assumptions.
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Theorem 6.2.1. If RSA and DDH problems are hard, and π, π′ are zero-knowledge proofs, then the

protocol in Figure 6.1 is a secure computation of FAPSI, in ROM.

Proof. The proof starts with building a simulator from a malicious server and proves that the server

has indistinguishable views (and outputs) when interacting with the simulator or with the real client.

It then builds a simulator from a malicious client.

[Construction of an ideal world SIMs from a malicious real-world server S∗]

The simulator SIMs is built as follows:

• Setup: SIMs executes KGen and publishes public parameters N, e, g, g′.

• Hash queries toH1 andH2: SIMs constructs two tables Υ1 = (q, hq) and Υ2 = ((k, h′q, q
′), t)

to answer, respectively, the H1 and H2 queries. Specifically:

– On query q to H1, SIMs checks if ∃(q, hq) ∈ Υ1: If so, it returns hq, otherwise it

responds hq ←r Z∗N , and stores (q, hq) in Υ1.

– On query (k, h′q, q
′) to H2, SIMs checks if ∃((k, h′q, q′), t) ∈ Υ2: If so, it returns t,

otherwise it responds t←r {0, 1}τ to H2, and stores ((k, h′q, q
′), t) to Υ2.

• Simulation of the real-world client C and the ideal-world server S:

1. SIMs picks M ′i ←r Z∗N , N ′i ←r Z∗N and computes Mi = (M ′i)
2, Ni = (N ′i)

2 for each

i = 1, . . . , v.

2. SIMs sends {Mi, Ni}i=1,...,v and simulates the proof π.

3. After getting (Z, {M ′i}i=1,...,v, {Ts:j}j=1,...,w), and interacting with S∗ as verifier in the

proof π′, if the proof π′ verifies, SIMs runs the extractor algorithm for Rs. Otherwise,

it aborts.

(a) For each Ts:j , SIMs checks if ∃(q, hq) ∈ Υ1 and ∃((k, h′q, q′), t) ∈ Υ2, s.t. q = q′,

hq = h′q, k = (hq)
2Rs and t = Ts:j . If so, add q to S; otherwise, add a dummy

item into S.

(b) Then SIMs plays the role of the ideal-world server, that uses S to respond to ideal

client C’s queries.

Since the distribution of {Mi, Ni}i=1,...,v sent by SIMs is identical to the distribution produced by

the real client C and the π proof system is zero-knowledge, S∗’s views when interacting with the

real client C and with the simulator SIMs are indistinguishable.
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[Output of (honest) real client C interacting with S∗]

Now we consider the output of the honest real client C interacting with S∗. By soundness

of proof π′, message Z and M ′i sent by S∗ is Z = geRs and M ′i = (Mi)
eRs for i = 1, . . . , v. Then,

C’s final output is a set containing all ci’s, such that H2(M
′
i ·Z−Rc:i , H1(ci), ci) ∈ {Ts:j}. In other

words, for each ci, C outputs ci if ∃ j s.t. H2(M
′
i ·Z−Rc:i , H1(ci), ci) = Ts:j . SinceH2 is a random

oracle, there are two possibilities:

1. S∗ computes Ts:j from H2((H1(ŝj))
2Rs , H1(ŝj), ŝj) for ŝj = ci. Since SIMs described

above extracts ŝj = ci and adds ŝj in S , the ideal world C also output ci on its input ci.

2. S∗ did not query H2 on (M ′i ·Z−Rc:i , H1(ci), ci) but H2(M
′
i ·Z−Rc:i , H1(ci), ci) happens to

be equal to Ts:j . This event occurs with negligible probability bounded by v · w · 2−τ .

Therefore, with probability 1 − v · w · 2−τ , the real-world client C interacting with S∗ and the

ideal-world client C interacting with SIMs yield identical outputs.

[Construction of an ideal world SIMc from a malicious real-world client C∗]

The simulator SIMc is built as follows:

• Setup and hash queries to H1 and H2: Same as Setup and H1 and H2 responses described

above in construction of SIMs.

• Authorization queries: On input m, SIMc responds with (m,σ) where σ = H1(m)d and

stores (m,σ) in another table, Υ3.

• Simulation of real-world server S and ideal-world client C:

1. After getting {Mi, Ni}i=1,...,v, and interacting with C∗ as verifier in the proof π, SIMc

checks if proof π verifies. If not, it aborts. Otherwise, it runs the extractor algorithm for

{Rc:i} and computes ±(H1(ci), σi) s.t. H1(ci) = σi
e.

2. For each ±(H1(ci), σi):

- If @(q, hq) ∈ Υ1 s.t. hq = ±H1(ci) then add a dummy item (δ, σδ) to C where δ

and σδ are randomly selected from the respective domain.

- If ∃(q, hq) ∈ Υ1 s.t. hq = ±H1(ci), but @(m,σ) ∈ Υ3 s.t. σ = ±σi then output

fail1 and abort.

- If ∃(q, hq) ∈ Υ1 s.t. hq = ±H1(ci) and ∃(m,σ) ∈ Υ3 s.t. σ = ±σi, then add

(q,±σ) to the set C.
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3. SIMc plays the role of the client in the ideal-world. On input C = {(c1, σ1), . . . , (cv, σv)},
SIMc interacts with the ideal-world server S̄ through the TTP.

4. On getting intersection L = {c′1, . . . , c′|L|}, with |L| ≤ v from the ideal-world interac-

tion, SIMc forms S= Π
(
c′1, . . . , c

′
|L|, δ

′
1, . . . , δ

′
w−|L|+1

)
, where δ′’s are dummy items.

5. SIMc picksRs ←r ZN/2, and computesZ = g2eRs andM ′i = (Mi)
2eRs for i = 1, ..., v.

6. For each ŝj ∈ S:

- If ŝj ∈ L, compute Ts:j = H2((H1(ŝj))
2Rs , H1(ŝj), ŝj).

- If ŝj /∈ L, compute Ts:j ←r {0, 1}τ .

7. SIMc returns Z, {M ′i}i=1,...,v, {Ts:j}j=1,...,w to C∗ and simulates the proof π′.

Claim 1. If event fail1 occurs with non-negligible probability, then C∗ can be used to break the

RSA assumption.

We describe the reduction algorithm using a modified simulator algorithm called Ch1 that takes an

RSA challenge (N ′, e′, z) as an input and tries to output z(e
′)−1

. Ch1 follows the SIMc as described

above, except:

• Setup: On input (N ′, e′, z), Ch1 sets N = N ′, e = e′ and picks generator g, g′ ←r Z∗N .

(Note that random g in Z∗N matches that chosen by a real key generation with probability

about 1/2.)

• Authorization queries: On input m, Ch1 responds with (m,σ) with σ ←r Z∗N , assign

H1(m) = σe, and records (m,σ) to Υ3.

• Hash queries to H1: On query H1 on q, if @(q, hq) ∈ Υ1 then Ch1 responds hq = z(rq)
e

where rq ←r ZN , and stores (q, rq, hq) in Υ1. (Since rq is uniformly distributed in ZN , the

distribution of hq is also uniformly distributed in ZN .)

Assume that fail1 occurs on (H1(ci), σi). Then, Ch1 extracts entry (q, rq, hq) ∈ Υ1 s.t. hq = H1(ci)

and outputs σi/rq, thus, breaking the RSA assumption.

Unless the fail1 event occurs, the views interacting with the SIMc and with the real proto-

col are different only in the computation of Ts:j for ŝj ∈ S but ŝj /∈ L. Let fail2 be the event that

C∗ queries H2 on ((H1(ŝj))
2Rs , H1(ŝj), ŝj) for ŝj ∈ S and ŝj /∈ L.

Claim 2. If event fail2 occurs with non-negligible probability, then C∗ can be used to break the

DDH assumption.
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We describe reduction algorithm Ch2 that takes a DDH challenge (N ′, f, α = fa (mod N ′), β =

f b (mod N ′), γ) as input and outputs the DDH answer using C∗. Ch2 follows the SIMc algorithm

as we describe above, except that:

• Setup: On input (N ′, f, α, β, γ), Ch2 sets N = N ′, g = f and picks generator g′ ←r Z∗N
and odd e←r ZN .

• Authorization queries: Same as in Ch1 simulation.

• Hash queries to H1: On query q to H1, if @(q, hq) ∈ Υ1 then Ch2 responds with hq = βgrq

where rq ←r ZN/2, and records (q, rq, hq) to Υ1. (Since rq is random ZN/2, the distribution

of hq is computationally indistinguishable from the uniform distribution of Z∗N .)

• In computation for Z, {Mi}, {Ts:j}:

– Ch2 sets Z = A2e and computes M ′i = γ2(α)2rq+2eRc:i for i = 1, . . . , v (instead of

picking Rs and computing Z = g2eRs and M ′i = (Mi)
2eRs).

– For each ŝj ∈ S, if ŝj ∈ L, Ch2 computes Ts:j = H2(γ
2(α)2rq , H1(ŝj), ŝj).

Given α = ga(= gRs) and β = gb, we replace gab by γ in the above simulation of Mi and

Ts:j . Thus, C∗’s views when interacting with the real server S and with the simulator Ch2 are

indistinguishable under that DDH assumption. Assume that fail2 occurs, i.e., C∗ makes a query

to H2 on ((H1(ŝj))
2Rs , H1(ŝj), ŝj) for ŝj ∈ S but ŝj /∈ L. Ch2 checks if ∃(q, rq, hq) ∈ Υ1 and

∃((k, h′q, q′), t) ∈ Υ2 s.t. q = q′, hq = h′q, k = γ2(α)2rq for each q ∈ S but q /∈ L. If so, Ch2
outputs True. Otherwise, Ch2 outputs False. Thus, the DDH assumption is broken.

Therefore, since fail1 and fail2 events occur with negligible probability, C∗’s view in the

protocol with the real-world server S and in the interaction with SIMc is negligible.

[The output of honest real server S interacting with C∗]

Finally, the real-world S interacting with C∗ in the real protocol outputs ⊥ and the ideal-

world S̄ interacting with SIMc gets ⊥. This ends proof of Theorem 6.2.1.

The APSI protocol secure in the malicious model (in Figure 6.1) differs from the one with

semi-honest security (in Section 5.3.2) in the following:

• We modify inputs to the protocol and add efficient zero-knowledge proofs to prevent client

and server from deviating from the protocol and to enable extraction of inputs.
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• We multiply client inputs by−1 or 1, in order to: (1) ensure that they are uniformly distributed

in QRN , and (2) simplify reduction to the RSA problem.

6.3 Deriving Linear-Complexity PSI Secure in the Malicious Model

We now present our protocol for secure computation of authorized set intersection. First,

we review the definition of PSI ideal functionality.

Definition 6.2. The ideal functionality FPSI of a PSI between server S on input S = {s1, . . . , sw}
and client C on input C = {c1, . . . , cv} is defined as follows:

FPSI : ((S, v), (C, w)) 7→ (⊥,S ∩ C)

Similar to its APSI counterpart, our new PSI technique builds on the PSI protocol pre-

sented in Section 5.3.3 (secure in the presence of semi-honest adversaries). We amend it to obtain

a protocol that securely implements FPSI in the presence of malicious adversaries, under the DDH

assumptions (in ROM). We assume that, at setup time, the following public parameters are selected:

p, q, g, g′, g′′, where p and q are primes, such that q|p−1 and g, g′, g′′ are generators of Z∗q , alongside

two hash functions H1 : {0, 1}∗ → Z∗p and H2 : Z∗p × Z∗p × {0, 1}∗ → {0, 1}τ .

Resulting protocol is illustrated in Figure 6.2 and is secure under the DDH assumption

in ROM. Once again, the server uses a random permutation Π(·) over set S, in order to prevent the

client from inferring additional information over S in case it has some knowledge on the order of

items in S.

Theorem 6.3.1. If the DDH problem is hard and π, π′ are zero-knowledge proofs, the protocol in

Figure 6.2 is a secure computation of FPSI, in ROM.

Proof. Once again, we construct a simulator from a malicious server (resp., client) and prove that

the server (resp., client) has indistinguishable views (and outputs) when interacting with the simu-

lator or with the real client (resp., server).

[Construction of an ideal world SIMs from malicious real-world server S∗]

Simulator SIMs is built as follows:

• Setup: SIMs generates and publishes public parameters p, q, g, g′, g′′.

• Queries H1 and H2: SIMs creates two tables Υ1 = (q, hq) and Υ2 = ((k, h′q, q
′), t) to

answer, respectively, H1 and H2 queries. Specifically,
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[Common input: p, q, g, g′, g′′, H1(·), H2(·)]

Client, on input: C = {c1, . . . , cv} Server, on input: S = {s1, . . . , sw}
(∀ i = 1, . . . v) PCHi =

∏
l 6=i(H1(ci))

PCH =
∏v
i=1(H1(ci))

Rc ←r Zq , X = PCH · (g)Rc

For 1 ≤ i ≤ v
Rc:i ←r Zq
Mi = H1(ci) · (g′)Rc:i

Ni = PCHi · (g′′)Rc:i

π = ZK{Rc, Rc:i, i = 1, . . . , v |
X/(MiNi) = gRc/(g′ · g′′)Rc:i}

X, {M1, . . . ,Mv}

{N1, . . . , Nv}, π
// If π doesn’t verify, then abort

(ŝ1, . . . , ŝv)← Π(S)

Rs ←r Zq , Z = (g′)Rs

For i = 1, . . . , v

M ′i = (Mi)
Rs

For j = 1, . . . , w

Ks:j = (H1(ŝj))
2Rs

Ts:j = H2(Ks:j , H1(ŝj), ŝj)

π′ = ZK{Rs | Z = (g′)Rs

∀i,M ′i = (Mi)
Rs}

Z, {M ′1, . . . ,M ′v},

{Ts:1, . . . , Ts:w}, π′
oo

If π′ doesn’t verify, then abort

For i = 1, . . . , v:

Kc:i = M ′i · Z−Rc:i

Tc:i = H2(Kc:i, H1(ci), ci)

Output: {ci | ci ∈ C and ∃ Ts:j s.t. Ts:j = Tc:i}

[All Computation is mod p]

Figure 6.2: PSI protocol with linear complexities secure in the malicious model, in ROM, under

the DDH assumption.

– On query q to H1, SIMs checks if ∃(q, hq) ∈ Υ1: If so, it returns hq, otherwise it

responds hq ←r Z∗p, and stores (q, hq) in Υ1.
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– On query (k, h′q, q
′) to H2, SIMs checks if ∃((k, h′q, q′), t) ∈ Υ2: If so, it returns t,

otherwise it responds t←r {0, 1}τ to H2, and stores ((k, h′q, q
′), t) to Υ2.

• Simulation of real-world client C and ideal-world server S:

1. SIMs picks X ←r Z∗p and {Mi, Ni |Mi ←r Z∗p, Ni ←r Z∗p} (for i = 1, . . . , v).

2. SIMs sends X, {Mi, Ni}i=1,...,v and simulates proof π.

3. After getting (Z, {M ′i}i=1,...,v, {Ts:j}j=1,...,w), and interacting with S∗ as verifier in

proof π′, if π′ verifies, SIMs runs the extractor algorithm for Rs. Otherwise, it aborts.

(a) For each Ts:j , SIMs checks if ∃(q, hq) ∈ Υ1 and ∃((k, h′q, q′), t) ∈ Υ2, s.t. q = q′,

hq = h′q, k = (hq)
Rs and t = Ts:j . If so, add q to S; otherwise, add a dummy item

into S.

(b) Then SIMs plays the role of the ideal-world server, that uses S to respond to ideal

client C’s queries.

Since the distribution of X, {Mi, Ni}i=1,...,v sent by SIMs is identical to the distribution produced

by the real client C and the π proof system is zero-knowledge, S∗’s views when interacting with

real client C and with simulator SIMs are indistinguishable.

[Output of the honest real client C interacting with S∗]

Now we consider output of honest real client C interacting with S∗. By soundness of π′,

message Z and M ′i sent by S∗ is Z = (g′)Rs and M ′i = (Mi)
Rs for i = 1, . . . , v. Then C’s final

output is a set containing all ci’s such that H2(M
′
iZ
−Rc:i , H1(ci), ci) ∈ {Ts:j}. In other words, for

each ci, C outputs ci if ∃ j s.t. H2(M
′
iZ
−Rc:i , H1(ci), ci) = Ts:j . Since H2 is a random oracle,

there are two possibilities:

1. S∗ computes Ts:j from H2((H1(ŝj))
2Rs , H1(ŝj), ŝj) for ŝj = ci. Since SIMs described

above extracts ŝj = ci and adds ŝj in S , ideal world C also output ci on its input ci.

2. S∗ did not query H2 on (M ′iZ
−Rc:i , H1(ci), ci) but H2(M

′
iZ
−Rc:i , H1(ci), ci) happens to be

equal to Ts:j . This event occurs with negligible probability bounded by v · w · 2−τ .

Therefore, with probability 1− v · w · 2−τ , real-world client C interacting with S∗ and ideal-world

client C interacting with SIMs produce identical output.

[Construction of ideal world SIMc from malicious real-world client C∗]

Simulator SIMc is built as follows:
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• Setup and hash queries to H1 and H2: Same as Setup and H1 and H2 responses described

above in construction of SIMs.

• Simulation of real-world server S and ideal-world client C:

1. After getting (X, {Mi}, {Ni}), and interacting with C∗ as verifier in proof π, SIMc

checks if π verifies. If not, it aborts. Otherwise, it runs the extractor algorithm for

Rc, {Rc:i} and computes H1(c1), . . . ,H1(cv).

2. For each H1(ci), if ∃(q, hq) ∈ Υ1 s.t. hq = H1(ci) then add q to the set C. Otherwise,

add a dummy item to C.

3. SIMc plays the role of the client in the ideal-world. On input C = {c1, . . . , cv}, SIMc

interacts with the ideal-world server S̄ through the TTP.

4. On getting intersection L = {c′1, . . . , c′|L|}, with |L| ≤ v from the ideal-world interac-

tion, SIMc forms S= Π
(
c′1, . . . , c

′
|L|, δ

′
1, . . . , δ

′
w−|L|+1

)
, where δ′’s are dummy items

and Π is a permutation function.

5. SIMc picks Rs ←r Zq, and computes Z = gRs and M ′i = (Mi)
Rs} for i=1,...,v.

6. For each ŝj ∈ S:

– If ŝj ∈ L, compute Ts:j = H2((H1(ŝj))
Rs , H1(ŝj), ŝj).

– If ŝj /∈ L, compute Ts:j ←r {0, 1}τ .

7. SIMc returns Z, {M ′i}, {Ts:j} to C∗ and simulates proof π′.

Let fail be the event that C∗ queries H2 on ((H1(ŝj))
Rs , H1(ŝj), ŝj) for ŝj ∈ S and ŝj /∈ L.

Similar to the argument in the proof of Theorem 6.2.1, if fail event does not occur, since the π′

is zero-knowledge, we argue that C∗’s views in the real game with real-world server S and in the

interaction with simulator SIMc constructed above are indistinguishable .

Claim 3. If event fail occurs with non-negligible probability, then C∗ can be used to break the

DDH assumption.

We describe the reduction algorithm called Ch that takes a DDH problem (p′, q′, f, α = fa (mod p′),

β = f b (mod p′), γ) as an input and tries to output the answer using C∗. Ch follows the SIMc al-

gorithm as we describe above, except that:

• Setup: On input (p′, q′, f, α, β, γ), Ch2 sets p = p′, q = q′, g′ = f and picks generator g,

g′′ ←r Z∗q .
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• Hash queries toH1: On query q toH1, if @(q, hq) ∈ Υ1 then Ch2 responds with hq = β(g′)rq

where rq ←r Zq, and records (q, rq, hq) to Υ1.

• In computation for Z, {M ′i}, {Ts:j}:

– Ch2 sets Z = A and computes M ′i = C(A)rq+Rc:i .

– For each ŝj ∈ S, if ŝj ∈ L, Ch2 computes Ts:j = H2(C(A)rq , H1(ŝj), ŝj).

Using an argument similar to that in the proof of Theorem 1, C∗’s views, when interacting with real

server S and with simulator Ch2, are indistinguishable under the DDH assumption. Assume that

fail occurs, i.e., C∗ makes a query to H2 on ((H1(ŝj))
Rs , H1(ŝj), ŝj) for ŝj ∈ S but ŝj /∈ L. Ch

checks if ∃(q, rq, hq) ∈ Υ1 and ∃((k, h′q, q′), t) ∈ Υ2 s.t. q = q′, hq = h′q, k = C(A)rq for each

q ∈ S and q /∈ L. If so, Ch outputs True. Otherwise, Ch2 outputs False. Thus, Ch solves the DDH

problem.

Since fail occurs with negligible probability, C∗’s view in the protocol with the real-world

server S and in interaction with SIMc is negligible.

[Output of honest real server S interacting with C∗]

Finally, real-world S interacting with C∗ in the real protocol outputs ⊥ and ideal-world

S̄ interacting with SIMc also gets ⊥. This ends the proof of Theorem 6.3.1.

Supporting (A)PSI with Data Transfer

It is easy to add the data transfer functionality to the protocols in Figure 6.1 and 6.2. We

assume that an additional secure cryptographic hash function H3 : {0, 1}∗ → {0, 1}τ is chosen

during setup. In either case (PSI or APSI), we then use H3(·) to derive a symmetric key for a

CPA-secure symmetric cipher, such as AES [45], used in the appropriate mode of operation. For

every j = 1, . . . , w, the server computes ks:j = H3(Ks:j) and encrypts associated data using a

distinct key ks:j . For its part, the client, for every i = 1, . . . , v, computes kc:i = H3(Kc:i) and

decrypts ciphertexts corresponding to the matching tag. (Note that ksj = kci if and only if ŝj = ci

and so Ts:j = Tc:i). As long as the underlying encryption scheme is CPA-secure, this extension

does not affect security or privacy arguments for any protocol discussed thus far. Also, it leaves the

complexity of the protocols unaltered.

This technique is same as the one used in Section 5.5 to support data transfer in (A)PSI

protocols with semi-honest security.
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6.4 Efficiency

We now analyze the efficiency of our protocols secure in the malicious model and compare

them to prior results. Protocol features and estimated asymptotic complexities in Table 6.1. For each

protocol, we choose choose parameters that achieve 80-bit security. We distinguish between offline

(i.e., pre-computation) and online operations.

Protocol Model Assumptions Pre-Comp. Server Comput. Client Comput. Mod

[31] Std Strong RSA - O(wv) 160-bit O(wv) 160-bit 1024

APSI Fig.6.1 ROM RSA,DDH O(w) 1024-bit O(v) 1024-bit O(v) 1024-bit 1024

PSI in [66] ROM Hom. Enc. - O(w log log v) 160-bit O(v+w) 160-bit 1024

PSI in [87] Std DDH - O(v+w(log log v)) 160-bit O(v+v) 160-bit 1024

PSI in [98] Std CRS,CDR O(w) 1024-bit O(v) 1024-bit O(v)m-bit 2048

PSI in [100] ROM OneMoreDH O(w) 160-bit O(v) 160-bit O(v) 160-bit 1024

PSI Fig.6.2 ROM DDH O(w) 160-bit O(v) 160-bit O(v) 160-bit 1024

Table 6.1: Performance Comparison of PSI and APSI protocols in the malicious model.

Observe that the APSI protocol (in Figure 6.1) is, to the best of our knowledge, the only

such construct, secure in the malicious model, with linear communication and computational com-

plexity. Moreover, our PSI protocol (in Figure 6.2) achieves the same complexity (linear number of

short exponentiations) as the work in [100]. However, the latter is only secure under the OneMore-

DH assumption, while ours – under DDH.

Finally, from a conservative stance, we select 1024-bit random exponents in the APSI

protocol of Figure 6.1. However, similar to what discussed (in Section 5.6), we could select shorter

exponents (e.g., 512-bit), relying on the arguments from [80, 72].
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Chapter 7

Size-Hiding Private Set Intersection

In this chapter, we introduce the concept of Size-Hiding in Private Set Intersection, where

the size of the set held by one of the participants is hidden from the other. After formal

definitions, we present our efficient and provably secure constructions.

7.1 Why Size Matters?

We start with motivating the need for PSI with a stronger privacy property of hiding the

size of the set held by one entitity. Below, we present three motivating scenarios.

1. U.S. Department of Homeland Security (DHS) maintains a dynamic database of suspected

terrorists (TWL: Terror Watch List) and, for every flight, it needs to know whether the flight

passenger manifest and TWL have any names in common. Since the DHS treats TWL as

secret information, and airlines are reluctant to unconditionally share passenger information,

entities could employ (A)PSI to let the DHS learn names of any flight passengers that also

appear in TWL.

2. U.S. Central Intelligence Agency (CIA) might have requirement to periodically (e.g., every

year) check whether any of its agents have been arrested or convicted of any crimes. It thus

needs to, ideally, compare its list of employees against each state’s list of arrestees and/or

convicted offenders. Again, the CIA and the states could run a PSI protocol to protect their

respective privacy.
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3. U.S. Center of Disease Control and Prevention (CDC) maintains a list of people, per city,

afflicted by certain contagious diseases, e.g., the H1N1 virus. The CDC needs to monitor

high or unusual concentrations of infected people in schools, since that might indicate the

start of an epidemic. To this end, it periodically needs to cross-check its list with student

rosters in each school district, and it can do so by employing PSI techniques, in order to

comply with privacy regulations.

All examples above have some features in common: neither party can reveal its information in

its entirety. What one of them is willing to reveal is limited to common information, i.e., items

appearing on both parties’ lists. Thus, PSI represents a potential solution to protect privacy of both

parties.

Another more subtle feature common to our examples is the need to keep client input

size secret. Specifically, the DHS does not reveal the number of names on the TWL. This list is

dynamic (names can be added and removed frequently) and revealing its size would leak sensitive

information. Likewise, by law, the CIA cannot divulge the number of its agents, for obvious reasons.

Finally, the number of infected school-kids in a city (school district) is extremely sensitive: its

disclosure can cause wide-spread panic and/or prompt health insurance rate hikes for that location.

Consequently, there are solid reasons to keep sizes of their inputs secret. The most com-

mon reason is that client’s input size represents sensitive information. A related reason is that, given

multiple interactions between the same two parties, fluctuations in input size are equally (or even

more) sensitive.

An additional motivating factor is related to the amount of computation imposed on the

server. In all current PSI protocols, server’s computational complexity always depends on size of

client set. Considering that the server obtains no output from the PSI interaction, and that client

set may be significantly larger than server’s (e.g., in case of TWL and passenger manifests), there

seems to be an “unfair” computational burden on the server.

We note, from the outset, that there are limits to input size hiding. For instance, both

parties cannot hide their respective input sizes. One obvious reason is that, in all examples above,

one party learns the intersection of its input with that of the other party. The intersection itself is a

list and its size leaks information about the overall input size.
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Size Hiding with Current Tools?

Current PSI protocols disclose participants’ input size Also, generic secure multi-party

computation tools [148] (discussed in Section 1.2.1) are not applicable as they provide all players

with the sizes of other players’ inputs.

One trivial approach is for the client to pad its input up to a certain fixed size. However,

this has several drawbacks. First and foremost, this always leaks the upper bound of input size.

Second, if client input is a dynamic set, the fixed size must reflect the maximum possible set size

(otherwise, fluctuations would leak information), which entails wasted computation and communi-

cation resources.

7.2 SHI-PSI Definitions

Informally, SHI-PSI extends PSI with an additional privacy feature that client input size

must not be revealed to the server. Clearly, SHI-PSI implies PSI. We now define the SHI-PSI

functionality as well as its security and privacy requirements.

Definition 7.1 (SHI-PSI.). An interactive protocol satisfying correctness, server privacy and client

privacy (per Definitions 7.2, 7.3, 7.4 below), involving client and server, on input, S = {s1, · · · , sw}
and C = {c1, · · · , cv}, respectively.

Definition 7.2 (Correctness.). If both participants follow the protocol on inputs (S, C), the server

outputs ⊥, and the client outputs (w,S ∩ C).

We assume semi-honest participants and use general definitions of secure computation given in

[77]. Specifically, we define SHI-PSI as a secure two-party protocol realizing the functionality

described above. Our client and server privacy definitions follow from those in related work [112,

66, 65, 85]. As stated by [77], in case of semi-honest participants, the general “real-versus-ideal”

definition framework is equivalent to a much simpler framework that extends the formulation of

honest-verifier zero-knowledge. Informally, a protocol privately computes certain functionality if

whatever can be obtained from one participant’s view of a protocol execution can be obtained from

input and output of that participant. In other words, the view of a semi-honest participant (including

C or S, all messages received during execution, and the outcome of that participant’s internal coin

tosses), on each possible input (C,S), can be efficiently simulated considering only that participant’s

own input and output. This is equivalent to the following formulation:
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Definition 7.3 (Client Privacy.). For every PPT S∗ that plays server’s role, for every S, and for

any client input set (C(0), C(1)), two views of S∗ corresponding to client’s inputs: C(0) and C(1), are

computationally indistinguishable.

Client privacy is guaranteed if no information is leaked about its input. That is, S∗ cannot distinguish

between C(0) and C(1). S∗ cannot even determine whether |C(0)| 6= |C(1)|. In fact, Definition 7.3 is

strictly stronger than client privacy definition for PSI protocols that reveal client input size. In this

case, indistinguishability would be relaxed by the constraint |C(0)| = |C(1)|.

Definition 7.4 (Server Privacy.). Let ViewC(C,S) be a random variable representing client’s view

during execution of SHI-PSI with inputs C,S. There exists a PPT algorithm C∗ such that:

{C∗(C,S ∩ C)}(C,S)
c≡ {ViewC(C,S)}(C,S)

In other words, on each possible pair of inputs (C,S), client’s view can be efficiently simulated by

C∗ on input: C and S ∩ C. Thus, as in [77], we claim that the two distributions implicitly defined

above are computationally indistinguishable.

Remark. As mentioned earlier, we consider security in the presence of semi-honest participants,

This models precisely the class of adversaries considered in our applications. For instance, in one

of the examples above, DHS and airlines have no incentive to deviate from protocol specifica-

tions, because they might be subject to auditing and could face severe penalties for non-compliance.

Nonetheless, airline personnel, system administrators, or other malicious insiders might seek to

surreptitiously obtain information about contents or size of the DHS Terror Watch List (TWL).

7.3 SHI-PSI Construction

We now present our SHI-PSI protocol. Its two main building blocks are: (1) RSA ac-

cumulators [16], and (2) unpredictable function fX,φ(N)(y) = (X1/y mod φ(N)) mod N (under the

RSA assumption on safe moduli).1

Specifically, the client computes a global witness for its input C = {c1, · · · , cv}, in the

form of an RSA accumulator: (g
∏v
i=1H1(ci)) mod N , where g is a generator of QRN and H1(·) is

1A function (family) fk(·) is an (t, qf , ε)−unpredictable if, for any t-time algorithmA and any auxiliary information
z, it holds that: Pr[(x∗, fk(x∗)←r Afk(·)(z))∧ x∗ /∈ Q] ≤ ε whereA makes at most qf queries to fk(·), andQ is the
set of queries [100].
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a full-domain hash function [15]. Then, the client securely blinds the accumulator with a random

exponent and sends the result (denoted as X) to the server. The latter learns no information about

client input. For each item sj ∈ S, the server computes unpredictable function f over client message

X . Server then applies a one-way function (in practice, a suitable cryptographic hash function) to

each output of f . The results form a set of so-called tags, one for each sj . These tags are then

returned to the client for matching (details below). The outer hash is crucial, since server privacy is

based on the fact that, in ROM, a hash of an unpredictable function is a PRF.

Note that H1(·) is a standard random oracle that does not have to output large primes.

Also, we obviate the technical issue of computing the inverse of H1(sj) “in the exponent” by se-

lecting the RSA modulus N as a product of safe primes to ensure that the order of X is itself a

product of large and unknown primes (see proof for details).

Client learns the set intersection as well as w since it can only match tags corresponding

to the items in the intersection. The intuition is that client computation of g(
∏
l6=iH1(cl)) leads to it

finding a matching tag if and only if ci ∈ S ∩ C.

7.3.1 Protocol Description

We present the initial SHI-PSI protocol in Figure 7.1. Common input is extracted from the

output of RSA-Gen(1τ ), reviewed in Section 2.3, for a security parameter τ . Specifically, common

input is N = pq where p = 2p′ + 1 and q = 2q′ + 1, a generator g of QRN , as well as two

hash functions, H1 : {0, 1}∗ → ZN (full-domain hash) and H2 : ZN → {0, 1}τ . Primes p′

and q′ are known exclusively by the server. Client must treat its exponents as large integers. We

emphasize that arithmetic operations in the exponent are performed in Z∗p′q′ . (In particular, squaring

is a permutation of QRN , in our setting.) Finally, we use Π(·) to indicate a random permutation

over a set of values in {0, 1}τ .

Theorem 7.3.1. Under the RSA assumption on safe moduli, the protocol in Figure 7.1 is a server-

and client-private SHI-PSI, as per Definition 7.1, in the Random Oracle Model (ROM).

Proof. We show that the protocol satisfies correctness, client privacy, and server privacy, defined

in Section 7.2. We assume that all server elements are distinct. Hash functions H1(·) and H2(·) are

modeled as random oracles.

Correctness. ∀ci ∈ S ∩ C,∃ sj ∈ S s.t. sj = ci. Hence, H1(sj) = H1(ci) and

Ks:j = XRs·1/H1(sj) = gRcRsPCH(1/H1(sj)) = gRc·PCHi = Kc:i (7.1)
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[Common input: N, g,H1(·), H2(·) – Server’s input (p′, q′)]

Client, on input: C = {c1, . . . , cv} Server, on input: S = {s1, . . . , sw})

PCH
def
=
∏v
i=1H1(ci)

For i = 1, . . . , v :

PCHi
def
=
∏
l 6=iH1(cl)

Rc ←r {1, . . . , N2}
X = gPCH·Rc mod N X

// Rs ←r {0, . . . , p′q′ − 1}
Z = (gRs) mod N

For j = 1, . . . , w :

Ks:j = (XRs·(1/H1(sj))) mod N

tj = H2(Ks:j)

{Ts:1, . . . , Ts:w} = Π({t1, . . . , tw})
Z, {Ts:1, . . . , Ts:w},oo

For i = 1, . . . , v :

Kc:i = (ZRc·PCHi) mod N

Tc:i = H2(Kc:i)

Output: {ci | ci ∈ C and ∃ Ts:j s.t. Ts:j = Tc:i}

Figure 7.1: Proposed SHI-PSI protocol.

Consequently, Tc:i = H2(Kc:i) = H2(Ks:j) = Ts:j ; thus, the client learns: ci ∈ S ∩ C.

Client Privacy. Since client’s only message to the server isX = g(PCH·Rc) mod N , the distribution

of X is essentially equivalent to that of random elements in QRN , which is a cyclic group of

order p′q′. Since PCH and p′q′ are relatively prime (with overwhelming probability), we assume

that gPCH mod N is a generator of QRN . Moreover, Rc is chosen uniformly at random from

{1, . . . , N2}. Thus, if Rc = r1p
′q′ + r2 with r2 ∈ {0, . . . , p′q′ − 1}, we have that the distribution

of r2 is statistically indistinguishable from the uniform distribution on {0, . . . , p′q′ − 1} and r1 and

r2 are essentially independent (see, e.g., [43]). Therefore, X = gPCH·Rc mod N is essentially

distributed as a random quadratic residue independent of PCH even if factorization of N is known.

Server Privacy. To show that client’s view can be efficiently simulated by a PPT algorithm, we

follow a hybrid argument: The entire client’s view is gradually transformed by replacing values

(received by the client) that are outside the set intersection, with elements chosen uniformly and in-
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dependently at random. It then suffices to show that this progressive substitution cannot be detected

by any efficient algorithm.

Let I = C ∩ S, and |I| = t. For any (C,S), we show that two distributions:

D0 =
{

(Rc, T ) : Rc ←r {1, . . . , N2}, T = Π
(
H2(X

Rs(1/H1(sj1))), · · · , H2(X
Rs(1/H1(sjw)))

)}
and

Dw−t =
{

(Rc, T ) : Rc ←r {1, . . . , N2}, T = Π
(
H2(X

Rs(1/H1(sj1))), · · · , rt+1, · · · , rw
)}

,

are computationally indistinguishable, where (H1(sj1), · · · , H1(sjt)) ∈ I and values in (rt+1, · · · , rw)

are chosen uniformly and independently at random from {0, 1}τ2 (i.e., the co-domain of the random

oracle H2(·)).

Our proof follows the standard hybrid argument: Let z = w − t. We define a series of

intermediate distributions Di, for 0 < i < z, where T is constructed by replacing the first i outputs

of items NOT in I with random values in the co-domain of H2(·).

After fixing index i and probabilistic polynomial-time distinguisher D, we define:

ε(τ) = |Pr[D = 1|Di+1]− Pr[D = 1|Di]|

Our claim is that ε(τ) is negligible in τ . Let us assume that this claim is false. The only

difference between Di and Di+1 is the way T is defined. Specifically, (i+ 1)-st item of T not in I

is H2(X
Rs(1/H1(sl))) for Di and a random value for Di+1.

SinceH2(·) is a random oracle, distinguisherDmust computeXRs(1/H1(sl)) = gRsRcPCH/H1(sl)

for H1(sl) /∈ I . Then, we can build an efficient algorithm A that, given a challenge (N, e, y),

returns y1/e mod N . (We assume that y is chosen uniformly at random from QRN . Thus, the

order of y is p′q′.) The simulation proceeds as follows: First, A sets g = y and, by program-

ming the random oracle H1(·), A assigns random values to outputs of H1(·) and computes d =

gcd(RsRcPCH,H1(sl)), for some integers e and b with H1(sl) = ed and RsRcPCH = bd.

Since H2(·) is a random oracle, A sees gRsRcPCH/H1(sl) = gb/e. Given that (gb/e)e = gb and

gcd(e, b) = 1, A can use the extended Euclidean algorithm to compute g1/e = y1/e via the well-

known Shamir’s trick.2 Thus, under the RSA assumption on safe moduli, formulated for a random

exponent, ε(τ) is negligible in τ .2
2This is similar to the reduction in [70]. However, in contrast to Theorem 5 in [70], our reduction is not based on the

strong RSA assumption, but on the standard RSA assumption in ROM. This is because e is generated independently of
base y and, thus, e is effectively provided as input to the adversary. In fact, the signature scheme in [70] is actually secure
under the standard RSA assumption in ROM; this was confirmed via private communication [69].

78



We stress that exponents in our scheme do not have to be prime, unlike related reductions,

e.g., [141, 16, 119, 70]. In fact, the client cannot compute gRsRcPCH/H1(sl), for l ∈ {1, . . . , w},
unlessRcPCH/H1(sl) is an integer. (Recall thatRc is generated honestly). Clearly, ifH1(sl) /∈ I ,

RcPCH/H1(sl) is, – with negligible probability – an integer as long asH1(sl) is sufficiently large:

random oracles are indeed division intractable, as shown in [70, 42] (in particular, [42] presents an

algorithm for finding division collisions sub-exponential in τ1, the digest size).

Security of our construction assumes both semi-honest players and the Random Oracle

Model. Nevertheless, generic 2PC techniques, following traditional definitions that also apply to

malicious adversaries, do not achieve size-hiding of client input. As noted in [77], the program

of each participant (in a protocol for computing the desired functionality) depends on the length of

other participant’s input. One intuitive argument against the feasibility of input size-hiding protocols

secure in the malicious model is that proving well-formed-ness of client input is only possible by

considering each client input set element separately (e.g., via some ZK proofs). Thus, combined

proofs would have to reveal the upper bound on client input size.

In conclusion, it is an interesting open problem to design PSI protocols (and in general

secure two-party computation schemes) that hide the size of at client set and with security in the

malicious model. On the other hand, it might be feasible to obtain SHI-PSI constructions that

provide security in the presence of malicious servers.

7.3.2 Protocol Complexity

We now analyze complexity of protocol presented in Figure 7.1. In each interaction, the

server needs to compute O(w) exponentiations, hence, its workload is independent of client set

size. Client work includes O(v) exponentiations, needed for the computation of (gPCH) mod N

since PCH is the non-modular product of v values. Additionally, the client computes Kc:i =

ZRc·PCHi mod N for each item: every such operation requires O(v) exponentiations, thus, client

complexity amounts to O(v2) exponentiations.3 Communication complexity in each interaction is

dominated by O(w) outputs of H2(·) sent from the server to the client in the second message. (The

first message involves the transmission of a single log(N)-bit value).

We now discuss a simple technique to reduce client computation. As discussed above,

the naı̈ve computation of Kc:i leads to O(v2) exponentiations. However, this can be reduced to

3If the client knew the factorization of N , it could compute PCH and PCHi-s using multiplication mod φ(N),
thus, reducing complexity of each exponentiation. However, as discussed earlier, the fact that the client does not know
φ(N) is crucial to server privacy.
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Figure 7.2: Tree-based strategy to reduce client computation.

O(v log(v)) via dynamic programming. Our intuition is as follows: For any (i, j), Kc:i and Kc:j

only differ by one exponent, since PCHi =
∏
l 6=iH1(cl), whereas, PCHj =

∏
l 6=j H1(cl).

In Figure 7.2, we illustrate this technique using a tree. We define Y = ZRc mod N , and

i:j = Y (
∏
l/∈[i,j]H1(cl)) mod N . The leaves in the tree contain values Kc:i, for 1 ≤ i ≤ v, e.g.:

i = Y (
∏
l 6=iH1(cl)) mod N = ZRc·PCHi mod N = Kc:i

We now obtain total number of exponentiations needed to compute all these values. Note

that, from a node with value i:j, one can obtain the children, i:h and h+1:j, as follows:

i:h =
(

i:j
)(

∏j
l=h+1H1(cl))

mod N

h+1:j =
(

i:j
)(

∏h
l=iH1(cl))

mod N

Since h =
i+ (j − i+ 1)

2
, each of these two operations involves exactly

j − i+ 1

2
ex-

ponentiations.

At level 0, there are v values, each obtained with a single exponentiation from the parents

at level 1. At level 1, there are v/2 values, each obtained with 2 exponentiations from nodes at level

2. In general, at level i, there are v/2i values, each obtained with 2i exponentiations from nodes at

level i+1.

Thus, client overhead can be estimated as:

# exponentiations =

log(v)−1∑
i=0

(
2i
v

2i

)
= v log(v).
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7.4 Extensions

In this section, we discuss some extensions to the SHI-PSI protocol of Section 7.3.

7.4.1 Linear-Complexity SHI-PSI

In many scenarios, participants engage in multiple interactions, and it is important to hide

(from client) any changes in server input. This feature is sometimes referred to as unlinkability: the

client cannot determine whether any two server interactions are related, i.e., executed on the same

input (e.g., see unlinkability definitions in Section 4.6.1 and Section 5.2).

[Common input: N, g,H1(·), H2(·) – Server’s input (p′, q′)]

Client, on input: C = {c1, . . . , cv} Server, on input: S = {s1, . . . , sw}

Offline

For i = 1, . . . , v :

PCHi
def
=
∏
l 6=iH1(cl)

ai = gPCHi mod N

PCH
def
=
∏v
i=1H1(ci)

A = gPCH mod N

Online

Rc ←r {1, . . . , N2}
X = ARc mod N

X // For j = 1, . . . , w :

For i = 1, . . . , v : Ks:j = X1/H1(sj) mod N

Kc:i = (ai)
Rc mod N tj = H2(Ks:j)

Tc:i = H2(Kc:i) {Ts:1, . . . , Ts:w} = Π({t1, . . . , tw})
{Ts:1, . . . , Ts:w},oo

Output: {ci | ci ∈ C and ∃ Ts:j s.t. Ts:j = Tc:i}

Figure 7.3: New (linear-complexity) SHI-PSI protocol.

The SHI-PSI protocol presented in Section 7.3 clearly guarantees unlinkability. Server

tags are “unlinkable” across multiple interactions, since the server computes a new random Rs,

thus, a new Z ∈ QRN , in each execution. However, it is worth considering scenarios that motivate

sacrificing unlinkability for better efficiency.
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To this end, we present a modified SHI-PSI protocol that reduces the number of client

on-line exponentiations. The main intuition is that removing Rs allows the client to pre-compute

the exponentiations involving (long) PCHi values. We show the resulting protocol in Figure 7.3.

(Notation as well as common and private inputs are same as protocol in Section 7.3.)

Note that security arguments in Theorem 7.3.1 also apply to this protocol variant. X =

gPCH·Rc , similar toXRs in protocol of Figure 7.1, is also uniformly distributed inQRN , forRc ←r

{1, . . . , N2}.

Correctness. Observe that ∀ci ∈ S ∩ C,∃ j s.t. ci = sj . Hence, H1(ci) = H1(sj) and:

Ks:j = X1/H1(sj) = gRcPCHj(1/H1(sj)) = gRc·PCHi = Kc:i

Consequently, Tc:i = H2(Kc:i) = H2(Ks:j) = Ts:j , and the client learns ci ∈ S ∩ C.

Computational and Communication Complexity. The amended SHI-PSI construct in Figure 7.3

incurs the following computational complexity: Server overhead is unaltered from Figure 7.1, i.e.,

O(w) exponentiations. However, the client performs O(v log(v)) exponentiations off-line, and only

O(v) exponentiations on-line. Communication overhead is the same as in the protocol of Figure 7.1.

7.4.2 SHI-PSI with Data Transfer

It is easy to add the data transfer functionality to the protocols in Figure 7.1 and 7.3,

and implement a “SHI-PSI with Data Transfer” variant. Following the same intuition discussed

in Section 5.5 and Section 6.3, we assume that an additional secure cryptographic hash function

H3 : {0, 1}∗ → {0, 1}τ is chosen during setup. In all aforementioned protocols, we can use

H3 to derive a symmetric key for a CPA-secure symmetric cipher, such as AES [45], used in the

appropriate mode of operation. For every j = 1, . . . , w, the server computes ks:j = H3(Ks:j) and

encrypts associated data using a distinct key ks:j . For its part, the client, for every i = 1, . . . , v,

computes kc:i = H3(Kc:i) and decrypts ciphertexts corresponding to the matching tag. (Note that

ksj = kci if and only iff sj = ci and so Ts:j = Tc:i). As long as the underlying encryption scheme is

CPA-secure, this extension does not affect security or privacy arguments for any protocol discussed

thus far.
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Part II

Practical Aspects of Privacy-Preserving

Sharing of Sensitive Information
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Chapter 8

Building a Toolkit for

Privacy-preserving Sharing of Sensitive

Information

In this chapter, we present the design and implementation of a toolkit for Privacy-

Preserving Sharing of Sensitive Information (PPSSI), geared for database querying ap-

plications. We use Private Set Intersection as the main building block and address several

interesting challenges.

8.1 Introduction

In previous chapters, we presented several efficient and provably secure protocols for

privately sharing sensitive information. The next step is to implement and experiment with them.

In this chapter, we describe the design of a Toolkit for Privacy-Preserving Sharing of Sensitive

Information (PPSSI). Such a toolkit functions as a privacy shield to protect interacting parties from

disclosing more than the required minimum of sensitive information. While our main building

blocks are PSI techniques, the process of realizing an efficient and secure toolkit for PPSSI is not at

all trivial. We model PPSSI in the context of database-querying, involving a server, in possession

of a private database, and a client, performing (privacy-preserving) disjunctive equality queries.

First, we consider a strawman approach, obtained with a naı̈ve adaptation of PSI tech-
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niques. In the process, we identify some challenges that arise when realizing PPSSI from PSI,

i.e., handling repetitions in input sets (multi-sets) and securely storing database indices. Next, we

propose a novel method for database encryption, that addresses aforementioned challenges.

8.2 Preliminaries

8.2.1 Syntax & Notation

As mentioned above, we model PPSSI in the context of simple database querying: A

server maintains a database, DB, and multiple clients pose disjunctive SQL queries.

• Server’s DB contains w records with m attributes (attr1, · · · , attrm), i.e.,

DB = {Rj}1≤j≤w for Rj = {valj,l}1≤l≤m, (where valj,l is Rj’s value for attribute attrl).

• A client poses disjunctive SQL queries, such as:

SELECT * FROM DB WHERE (attr∗1 = val∗1 OR · · · OR attr∗v = val∗v) (8.1)

PPSSI guarantees that the client, upon query execution, gets all records in DB satisfying

where clause, and nothing else. The server learns nothing about any {attr∗i , val∗i }1≤i≤v. We assume

that the database schema (format) is known to the client.

An alternative version enables the concept of authorized queries, where the client is re-

quired to obtain query authorizations from a (mutually trusted) offline Certification Authority (CA)

prior to interacting with the server. That is, the client outputs records matching its query (e.g., in

Equation 8.1) if and only if it holds pertinent authorizations, (e.g., for (attr∗i , val
∗
i )).

Our notation is reflected in Table 8.1. We use H1(·), H2(·), H3(·), H4(·) to denote differ-

ent hash functions.

8.2.2 Privacy Requirements

We now define PPSSI (informal) privacy requirements. We consider both semi-honest

adversaries and malicious adversaries.

• Correctness. Upon query execution, the client outputs all records in DB that satisfy the where

clause.
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attrl lth attribute in the database schema ctrj,l number of times where valj′,l = valj,l, ∀j′ <= j

Rj jth record in the database tagj,l tag for attrl, valj,l

valj,l value in Rj corresponding to attrl k′j,l key used to encrypt kj

kj key used to encrypt Rj k′′j,l key used to encrypt index j

erj encryption of Rj ekj,l encryption of key kj

tkj,l token evaluated over attrl, valj,l eindj,l encryption of index j

Table 8.1: Notation used in Chapter 8.

• Server Privacy. The client learns no information about any record in DB that does not satisfy

the where clause.

• Server Privacy (Authorized Queries). Same as above. In addition, the client learns no infor-

mation about any record satisfying the where (attr∗i = val∗i ) clause, unless the (attr∗i , val
∗
i )

query is authorized by the CA.

• Client Privacy. The server learns nothing about any client query parameters, i.e., all attr∗i
and val∗i .

• Client Privacy (Authorized Queries). Same as above. In addition, the server learns no infor-

mation about client’s authorizations.

• Client Unlinkability. The server cannot determine (with probability non-negligibly exceeding

1/2) whether any two client queries are related.

• Server Unlinkability. For any two queries, the client cannot determine (with probability non-

negligibly exceeding 1/2) whether any record in the server’s database has changed, except

for the records that are learned (by the client) as a result of both queries.

• Forward Security (Authorized Queries). The client cannot violate server privacy with regard

to prior interactions, using authorizations obtained later.

Unlinkability keeps one participant from noticing changes in other participant’s input. In

particular, unless server unlinkability is guaranteed, the client can always detect whether the server

updates its database between two interactions. Unlinkability also minimizes the risk of privacy

leaks. For instance, without client unlinkability, the server learns that the client’s queries are the
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same in two interactions, thus, if one of these queries is leaked, the other query would be immedi-

ately exposed.

8.2.3 Pre-Distribution in PSI

PSI constitutes the main building block of our PPSSI toolkit. (We have formally defined

PSI functionality in Section 5.2).

We distinguish between (A)PSI-DT protocols based on whether or not they support pre-distribution:

(A)PSI-DT with pre-distribution: In this variant, the server can “pre-process” its input set, inde-

pendently from client input to the protocol. This way, the server can pre-distribute its (processed)

set items before protocol execution. Both pre-processing and pre-distribution can be done offline,

once for all possible clients, thus, server’s online complexity does not depend on server input size.

(A)PSI-DT without pre-distribution: In this variant, server inputs to the protocol depend on both

item in its sets and client’s input to the protocol, thus, pre-distribution is impossible.

Pre-distribution precludes server unlinkability, since server input is assumed to be fixed. Also, in

the context of authorized protocols with pre-distribution, forward security cannot be guaranteed.

8.2.4 Related Primitives

Searchable Encryption. Song, Wagner, and Perrig [145] introduce Symmetric Searchable Encryp-

tion (SSE), allowing a client to store on an untrusted server messages encrypted using a symmetric-

key cipher. Later, the client can search for specific keywords by giving the server a trapdoor that

does not reveal keywords or plaintexts. Boneh et al. [20] later extended SSE to the public-key set-

ting, i.e., anyone can use client’s public key to encrypt and route messages through an untrusted

server (e.g., a mail server). The client can then generate search tokens, based on its private key, to

let the server identify messages including specific keywords.

Privacy-Preserving Database Querying (PPDQ). Some PPDQ techniques are similar to SSE: a

client encrypts its private data, outsources it to an untrusted service provider (while not maintaining

copies), and queries the service provider at will. However, in addition to simple equality predicates

supported by SSE, certain techniques [83, 92, 17] support general SQL operations. Again, this

setting is different from ours: data, although stored by the server, belongs to the client, thus, there is
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no privacy restriction with respect to the client. Moreover, these techniques do not provide provably

secure guarantees, since they are based on statistical (probabilistic) methods.

Another line of work is closely related to Private Information Retrieval (PIR), discussed

in Section 3.3.4. Olumofin and Goldberg [131] propose an extension from block-based PIR to SQL-

enabled PIR. As opposed to PPSSI, however, server database is public. Moreover, it requires data

to be replicated over several non-colluding servers.

Kantarcioĝlu and Clifton [101] consider a scenario where the client matches classification

rules against server’s database. However, they assume that client’s rules are fixed and known to the

server. Murugesan et al. [122] also allow “fuzzy” matching. However, this approach requires a

number of (expensive) cryptographic operations quadratic in the size of participants’ inputs.

Other PPDQ-related results, such as [137, 41], require mutually trusted and non-colluding

entities.

8.3 A Strawman Approach

We now attempt to construct PPSSI using a straightforward instantiation of PSI-DT pro-

tocols (or APSI-DT, for authorized queries). We outline this strawman approach below and show

its security limitations.

For each record, the hash of every attribute-value pair (attrl, valj,l) is treated as a set ele-

ment, andRj – its associated data. Server “set” is then: S = {(H1(attrl, valj,l), Rj)}1≤l≤m,1≤j≤w.

Client “set” is: C = {H1(attr
∗
i , val

∗
i )}1≤i≤v, i.e., elements corresponding to the where clause in

Equation 8.1. Optionally, if authorized queries are enforced, C is accompanied by signatures σi over

H1(attr
∗
i , val

∗
i ), following the APSI-DT syntax. Participants engage in an (A)PSI-DT interaction;

at the end of it, the client obtains all records matching its query. However, the strawman approach

has two security issues:

Issue 1: Multi-Sets. While most databases include duplicate values (e.g., “gender=female”),

PSI-DT and APSI-DT definitions assume no duplicates.1 If server set contains duplicate values,

corresponding messages (PRF values computed over the duplicate values) to the client would be

identical and the client would learn all patterns and distribution frequencies. This raises a serious

concern, as actual values can be often inferred from their frequencies. For example, consider a
1Some PSI constructs (e.g., [108]) support multi-sets, however, their performance is not optimal as they incur quadratic

computational overhead (in the size of the sets), as opposed to recent and efficient (A)PSI-DT protocols with linear
complexity (e.g., those in Chapters 5 and 6, or in [100]). Also, they support neither data transfer nor authorization.
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large database where one attribute reflects “employee blood type”: since blood type frequencies

are well-known for general population, distributions for this attribute would essentially reveal the

plaintext.

Issue 2: Data Pointers. To enable querying by any attribute, each record, Rj , must be separately

encrypted m times, i.e., once for each attribute. As this would result in high storage/bandwidth

overhead, one could encrypt each Rj with a unique symmetric key kj and then using kj (instead of

Rj) as data associated with H1(attrl, valj,l). Although this would reduce the overhead, it would

trigger another issue: in order to use the key – rather than the actual record – as the associated “data”

in the (A)PSI-DT protocol, we would need to store a pointer to the encrypted record alongside each

H1(attrl, valj,l). This would allow the client to identify all H1(attrl, valj,l) corresponding to a

given encrypted record by simply identifying all H1(attrl, valj,l) with associated data pointers

equal to the given records. This information leak would be even more severe if one combines it with

the previous “attack” on multi-sets: given two encrypted records, the client could establish their

similarity based on the number of equal attributes.

8.4 PPSSI Toolkit

We now present the construction of our PPSSI toolkit. Similar to the strawman approach,

it aims at enabling privacy-preserving database querying using any secure (A)PSI-DT instantiation;

however, it addresses aforementioned challenges by proposing a novel database-encryption tech-

nique. It uses (A)PSI-DT without pre-distribution to guarantee server unlinkability and forward

security.

High-level operation of PPSSI is illustrated in Figure 8.1. It works with any secure

(A)PSI-DT technique: different (A)PSI-DT constructions yield distinct instantiations of the Token

function (see details below).

8.4.1 The Token Function

In step 1, we let the client and the server engage in the oblivious computation of Token

function. As a result, the client obtains tki = Token(ci), where ci = H1(attr
∗
i , val

∗
i ). (Note

that the server learns nothing about ci or tki, since Token function is computed using an (adapted)

(A)PSI-DT protocol.

Following a thorough experimental analysis (presented in Appendix A), we select the PSI-
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• Client’s input: {ci, σi}1≤i≤v , where: ci = H1(attr∗i , val
∗
i ). σi is only used for APSI-DT protocols.

• Server’s input: {sj,l}1≤j≤w,1≤l≤m, {Rj}1≤j≤w, where: sj,l = H1(attrl, valj,l)

1. Client ks
Obliviously compute:{tki←Token(ci)}1≤i≤v +3 Server

2. Server: EDB← EncryptDatabase(Token(·), {Rj}1≤j≤w)

3. Server EDB // Client

4. Client: ∀1≤i≤vRi ← Lookup(tki,EDB), Output R1 ∪ · · · ∪Rv.

Figure 8.1: Outline of our PPSSI construction.

DT technique introduced in Section 5.3.3 – denoted as DT10-1 – as well as its APSI-DT counterpart

(for authorized queries) presented in Section 5.3.2 – denoted as DT10-APSI. Both protocols are se-

cure against semi-honest adversaries. As discussed in Chapter 6, with same asymptotic complexity,

they can be extended to attain security against malicious adversaries.

Table 8.2 describes the definition of the Token function, using DT10-1 and DT10-APSI,

over a value x, on client’s private input Rc and server’s private input Rs.

Instantiation Public Params
Private Params

Token definition
Server Client

DT10-1 (Sec. 5.3.3) p, q, g,H1(·) Rc Rs Token(x) = (gRc ·H1(x))Rs mod p

DT10-APSI (Sec. 5.3.2) N, e, g,H1(·) Rc Rs Token(x) = (geRc ·H1(x)2)Rs mod N

Table 8.2: Token definition for DT10-1 and DT10-APSI.

In DT10-1, public parameters include p, q, g,H1(·), where p is a large prime, g a generator

of a subgroup of order q (s.t., q|p− 1), and H1(·) is a cryptographic hash function H1 : {0, 1}∗ →
Z∗p. Rc and Rs are random values in Zq. In DT10-APSI, public parameters include N, e, g,H1(·),

where (N, e) is CA’s pk, corresponding to sk d; g is a generator of QRN and H1(·) is a full-domain

hash function H1 : {0, 1}∗ → ZN .

The Token function is used twice in our PPSSI construction: in step 1, it is evaluated

by the client on input ci (1 ≤ i ≤ v) and in step 2, it is evaluated by the server during database

encryption (discussed in Section 8.4.2).

In Figure 8.2 and Figure 8.3, we present the details of Token instantiation, using, respec-

tively, DT10-1 and DT10-APSI.

Server’s evaluation of Token over its own inputs (in Algorithm 1, presented below) can
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Client’s computation of Token(x)

1. Client: Rc←r Zq , Rx←r Zq
X = gRc, M = H1(x) · gRx

2. Client
(X,M) // Server

3. Server: Rs ←r Zq
Z ← gRs,M ′ = MRs

4. Server
(Z,M) // Client

5. Client: Token(x) = M ′ · ZRc · Z−Rx

Server’s computation of Token(x)

Server: Token(x) = (gRc ·H1(x))Rs

(All operations are mod p.)

Client’s computation of Token(x)

1. Client: Rc←r ZN/4, Rx←r ZN/4,

X = gRc, M = σ2 · gRx,

where σ = H1(x)d, issued by CA.

2. Client
(X,M) // Server

3. Server: Rs ←r ZN/4
Z ← geRs,M ′ = MeRs

4. Server
(Z,M) // Client

5. Client: Token(x) = M ′ · ZRc · Z−Rx

Server’s computation of Token(x)

Server: Token(x) = (geRc ·H1(x)2)Rs

(All operations are mod N .)

Figure 8.2: Oblivious computation of Token

using DT10-1.

Figure 8.3: Oblivious computation of Token

using DT10-APSI.

be performed only after step 1 of Figure 8.1. The server needs to obtain from the client the value

X = gRc, that is sent as part of the oblivious computation protocol. Neither the input nor the output

of the function is revealed to the client during server’s evaluation of Token in Algorithm 1.

8.4.2 Database Encryption with counters

In step 2 of Figure 8.1, the server runs EncryptDatabase procedure (described in Algo-

rithm 1) and creates EDB, that is transferred to the client in step 3.

In contrast to the strawman approach, we modify the “encryption” technique: rather than

(directly) using a symmetric-key encryption scheme, the EncryptDatabase procedure is invoked.

It is illustrated inAlgorithm 1. It takes as input the definition of the Token function, and server’s

record set. It consists of two “phases”: (1) Record-level and (2) Lookup-Table encryptions.

Record-level encryption is relatively trivial (lines 1–6): first, the server shuffles record

locations; then, it pads each Rj up to a fixed maximum record size, picks a random symmetric key

kj , and encrypts Rj as erj = Enckj (Rj).

Lookup-Table (LTable) encryption (lines 8–15) pertains to attribute name and value pairs.

It enables efficient lookup and record decryption. In step 8, the server hashes an attribute-value pair
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Algorithm 1: EncryptDatabase Procedure.
input : Function Token(·) and record set {Rj}1≤j≤w
output: Encrypted Database EDB

1: Shuffle {Rj}1≤j≤w
2: maxlen← max length among all Rj

3: for 1 ≤ j ≤ w do

4: Pad Rj to maxlen;

5: kj ←r {0, 1}128;

6: erj ← Enckj (Rj);

7: for 1 ≤ l ≤ m do

8: hsj,l ← H1(attrl, valj,l);

9: tkj,l ← Token(hsj,l);

10: tagj,l ← H2(tkj,l||ctrj,l);

11: k′j,l ← H3(tkj,l||ctrj,l);

12: k′′j,l ← H4(tkj,l||ctrj,l);

13: ekj,l ← Enck′j,l(kj);

14: eindj,l ← Enck′′j,l(j);

15: LTablej,l ← (tagj,l, ekj,l, eindj,l);

16: end for

17: end for

18: Shuffle LTable with respect to j and l;

19: EDB← {LTable, {erj}1≤j≤w};

and uses the result as input to Token function in step 9. In step 10, we use the concatenation of

Token output and a counter, ctrj,l, in order to compute the tag tagj,l, later used as a lookup tag

during client query. We use ctrj,l to denote the index of duplicate value for the l-th attribute. In

other words, ctrj,l is the counter of occurrences of valj′,l = valj,l,∀j′ <= j. For example, the

third occurrence of value “Smith” for attribute “Last Name” will have the counter equal to 3. The

counter guarantees that duplicate (attr, val) pairs correspond to different tags, thus addressing Issue

1. Next, the server computes k′j,l = H3(tkj,l||ctrj,l) and k′′j,l = H4(tkj,l||ctrj,l). Note that k′j,l is

used for encrypting symmetric key kj . Whereas, k′′j,l is used for encrypting the index of Rj . In step

13, the server encrypts kj as ekj,l = Enck′j,l(kj). Then, the server encrypts eindj,l = Enck′′j,l(j).
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The encryption of index (data pointer) guarantees that the client cannot link two tags belonging to

the same record, thus addressing Issue 2. In step 15, the server inserts each tagj,l, ekj,l and eindj,l

into LTable, which is {tagj,l, ekj,l, eindj,l}1≤j≤w,1≤l≤m. Next, the server shuffles LTable (step 18).

The resulting encrypted database, EDB, is composed of LTable and {erj}1≤j≤w (step 19).

8.4.3 Lookup with counters

Algorithm 2: Lookup Procedure.
input : Search token tk and encrypted database EDB = {LTable, {erj}1≤j≤w}
output: Matching record set R

1: ctr ← 1;

2: while ∃tagj,l ∈ LTable s.t. tagj,l = H2(tk||ctr) do

3: k′′ ← H4(tk||ctr);

4: j′ ← Deck′′(eindj,l);

5: k′ ← H3(tk||ctr);

6: k ← Deck′(ekj,l);

7: Rj ← Deck(erj′);

8: R← R ∪Rj ;
9: ctr ← ctr + 1;

10: end while

In the last step in Figure 8.1 (step 4), the client runs Lookup procedure (illustrated in

Algorithm 2), using the tki tokens over EDB.

We now discuss Lookup procedure in Algorithm 2. It is used by the client to obtain the

query result, i.e., to search EDB for all records that match client’s search tokens.

In step 1, the client initializes a counter to 1. Next, it searches LTable for tag tagj,l =

H2(tk||counter). If there is a match, the client attempts to recover the record associated with

tagj,l. It computes k′′ = H4(tk||ctr) and tries to decrypt: j′ = Deck′′(eindj,l). Note that erj′

now corresponds to the associated record. To decrypt erj′ , the client first recovers the key k used

to encrypt erj′ , by computing k′ = H3(tk||ctr) and obtaining k = Deck′(ekj,l). Finally, the client

obtains Rj = Deck(erj′).

There are several ways for the client to store LTable. Hash table storage is most efficient

as it only requires constant lookup time.

93



8.4.4 Discussion

Query Example. We now demonstrate the correctness of our query procedure. We consider the

case where the the client searches for records matching “gender = male”. We assume that server’s

database includes the attribute “gender” with two occurrences of value “male”. In Algorithm 1,

the server generates the same tk (step 9) for the two occurrences of (“gender”, “male”). However,

for the first occurrence, tag = H2(tk||1), k′ = H3(tk||1), k′′ = H4(tk||1) while, for the second

occurrence, tag = H2(tk||2), k′ = H3(tk||2), k′′ = H4(tk||2).

If the client searches for records matching “gender = male”, it first derives tk (step 1 of Figure 8.1).

Next, it matches H2(tk||1) in LTable, derives keys k′ = H3(tk||1), k′′ = H4(tk||1), and recovers

the index in step 4 and the record in step 7 of Algorithm 2. It also looks for H2(tk||2) and performs

the same operations, except that k′ = H3(tk||2), k′′ = H4(tk||2). Finally, the client looks for

H2(tk||3): finding no match, it terminates.

Addressing Issue 1 and 2. Our construction discussed above addresses Issue 1 and Issue 2, raised

in Section 8.3.

• Multi-sets: The use of counters during database encryption makes each tagj,l (resp., ekj,l,

eindj,l) distinct in LTable, thus hiding plaintext patterns.

• Data Pointers: Storing eindj,l (rather than j) in LTable, prevents the server from exposing

the relationship between an entry LTablej,l and its associated record Rj .

Security. PPSSI security immediately stems from that of the underlying (A)PSI-DT protocols,

used during Token computation. However, additional details as well as formal adversarial games

and proofs (for both semi-honest and malicious security) can be found in [50].

Removing the need for online server. Although it only needs to perform oblivious computation

of tokens, we require the server to be online. Inspired by [84] and [62], we can replace the online

server with a tamper-proof hardware component (e.g., a smartcard), dedicated to computing Token

function. The server only needs to program its secret key into the smartcard. This way, after handing

the smartcard to the client, the server can go offline. The smartcard is assumed to enforce a limit on

the number of Token invocations.
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8.4.5 Performance Evaluation

We now evaluate the performance of the PPSSI toolkit. Throughout all experiments, we

use 2048-bit moduli and records of fixed 2KB length. Testing software was written in C++ using

OpenSSL (ver. 1.0), GMP (ver. 5.01) libraries. Experiments were performed on a Ubuntu 9.10

desktop platform with Intel Xeon E5420 CPU (2.5GHz and 6MB cache) and 8GB RAM.

Figure 8.4 shows the computational overhead for the oblivious computation of Token

function, for every possible (A)PSI-DT instantiation. The cost always increases linearly with

client’s query size. Figure 8.5 evaluates performance of the Lookup-Table encryption, performed

by the server. This operation includes server’s computation of Token function over its own input.

Again, runtime increases linearly with the product of the number of records (w) and the number

of attributes (m). Figure 8.6 shows the cost of the Record-level encryption. This only depends on

the number of records. Compared to Lookup-table encryption, the Record-level encryption incurs a

negligible overhead.

The cost of Lookup procedures (Algorithm 2) is negligible (in the order of 10µs) and we

omit its measurement details.

We conclude that, as all operations have linear complexity, our constructions scale effi-

ciently for larger databases and query sets.

PPSSI vs PIR

We compare the efficiency of PPSSI to that of Symmetric PIR (SPIR, reviewed in Sec-

tion 3.3.4). Recall that PPSSI provides privacy guarantees resembling those of SPIR. Both hide

client’s access patterns to the server and also protect privacy of server’s data (with respect to records

not matching the queries). However, one possible drawback of PPSSI is that communication over-

head is linear in the size of the database, whereas, SPIR incurs sub-linear communication overhead.

However, (1) SPIR does not immediately support keyword search, and (2) SPIR introduces a signif-

icantly higher computation overhead, that negates its advantage in communication complexity. To

support latter claim, we compare overall performance of PPSSI with that of Gentry and Ramzan’s

single-database PIR (GR-PIR) [73]. To the best of our knowledge, it is currently the most efficient

single-database SPIR technique. Assuming a database with n records, it incurs O(k + d̄) commu-

nication (where k ≤ log n and d̄ is the bit-length of each record), and O(n) computation overhead.

For the comparison, we used a database with w = 1024 records and m = 5 attributes.

Each record is of size 2KB. We assume the client’s query size is v = 1024 and and 10 (1%) records
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matching the query (vm). From a conservative stance, we used a relatively (10Mbps) connection

between client and server. All moduli were 2048 bits.

Results shown in Figure 8.7 and confirm that PPSSI is significantly more efficient than

GR-PIR. We break down the overall cost into client, server and network transmission components.

For all schemes, transmission cost (at the top stack in each bar) is negligible compared to client and

server cost.

On the other hand, linear communication overhead still prompts some concerns regarding

the scalability of our techniques to very large databases. Nonetheless, our preliminary results in [50]

suggest that one may minimize bandwidth overhead by using a (semi-trusted) third party or a piece

of trusted hardware.
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Chapter 9

Private Interest Sharing and Activity

Scheduling for Smartphones

In this chapter, we explore privacy-preserving techniques geared for mobile applications

where sensitive information is shared between smartphone users.

9.1 Introduction

In this last chapter, we turn to the mobile environment. Equipped with relatively powerful

processors and fairly large memory and storage capabilities, smartphones can nowadays accommo-

date increasingly complex interactive applications. As a result, the growing amount of sensitive

information shared by smartphone users raises serious privacy concerns and motivates the need for

appropriate privacy-preserving mechanisms.

We focus on the design of collaborative applications involving participants – with limited

reciprocal trust – willing to share sensitive information from their smartphones and use it to (coop-

eratively) perform operations without endangering their privacy. Within this context, prior work has

failed in combining provably secure guarantees with (realistically) efficient techniques (as discussed

in the remainder of this chapter).
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9.1.1 Motivation

The increasing dependence on anywhere-anytime availability of information has made

smartphones commensurably more influential in people’s computing ecosystems. Many tasks once

performed exclusively on PCs have now branched out to phones and have successfully accommo-

dated device constraints, such as display, connectivity, and power [102]. Smartphone applications

are progressively enabling sophisticated interactions among people. Nowadays, users share infor-

mation, for instance, for real-time social networking [130], to discover nearby friends (e.g., using

Google Latitude, Foursquare, Gowalla, etc.), to exchange recommendations [91], or even for work-

related purposes [103].

Beneath the proliferation of information exchange lays an extremely rich source of data:

mobile phones, typically accompanying users 24/7, learn significant amounts of information about

their owners and their environment. Business models behind many of today’s free web applications,

such as social network websites or search engines, heavily rely on data in the clear, collected from

the users and later used to offer context-based services and recommendations. However, as the

amount (and sensitiveness) of shared information increases, so do related privacy concerns.

In this chapter, we present a novel architecture geared for privacy-sensitive applications

where personal information is shared among a group of users and decisions are made based on given

optimization criteria. Specifically, we focus on two application scenarios: (i) privacy-preserving

interest sharing, i.e., discovering shared interests without leaking users’ private information, and (ii)

private scheduling, i.e., determining common availabilities and location preferences that minimize

associate costs, without exposing any sensitive information. In doing so, the main challenge is to

protect privacy using cryptographic (provably secure) techniques while respecting computational

and bandwidth constraints typical of smartphones.

Previous work has attempted to address this problem by using distributed cryptographic

primitives, such as PSI, discussed in Chapters 5 and 6. While some of these techniques are quite

efficient for the two-party case, the multi-party variants are not practical enough for large-scale de-

ployment. For instance, the most efficient multi-party PSI, [108], incurs computational complexity

– specifically, a number of long modular exponentiations – quadratic in the size of participants’

inputs. Alternatively, statistical methods for protecting privacy have also been used [93]. However,

they do not achieve provable privacy guarantees and generally require a fully-trusted party to pro-

duce privacy-preserving statistical digests. Such a trust assumption is often unrealistic, since all

sensitive information is concentrated at this party. Beyond its obvious privacy implications, this
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modus operandi imposes liability issues with regard to participants’ private data and concerns about

possible data loss, subpoena, etc.

9.1.2 Roadmap

Motivated by the arguments above, we introduce an appropriate architecture that involves

several smartphone users and a semi-trusted server (Section 9.2). This entity is never trusted with

participants’ data itself – i.e., it learns no information about users’ inputs or outputs. We envision

that this entity may be implemented by public services, (e.g., Nokia Ovi [128] or Amazon EC2 [2]),

without disclosing any data in the clear.

We address the problem of letting smartphone users share their interests, while main-

taining their privacy (Section 9.3). We overview several application examples, such as discovering

matching locations, routes, availabilities, etc., without exposing any other information beyond the

matching interests, or calling “polls” to find most popular preferences, without revealing anything

about other preferences or single user’s choices. We present a generic efficient cryptographic tech-

nique that addresses all these scenarios.

Next, we consider assigning costs to the various interests, and we focus on minimizing

the overall aggregated cost in a privacy-preserving way. We consider, as an example, the problem

of Private Scheduling, where a group of smartphone users want to schedule a meeting while pre-

serving the privacy of their calendars (Section 9.4). We are stimulated by ongoing projects aiming

at automatically filling mobile phones’ calendars with users’ activities (e.g., based on emails, text

messages, routes). Also, widespread calendar applications, such as Apple iCal, Microsoft Outlook,

and Google Calendar, currently provide software counterparts for smartphones. We propose three

protocols that target different scenarios, corresponding to different efficiency, privacy, and system

requirements.

Finally, we analyze the performance of proposed constructs (Section 9.8) and discuss

related work (Section 9.9).

9.2 Preliminaries

In this section, we model our system for privacy-preserving computation on mobile de-

vices. We describe players, privacy properties, and trust assumptions.
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9.2.1 Players

Our system consists of:

• N smartphone users, P1, . . . , PN , called participants. Participants P1, . . . , PN hold private

information, denoted, resp., with x1, . . . , xN . Throughout the rest of this chapter, we assume

that N > 2.

• A public server, S, that generates no input.

Participant P1 is called Initiator, to denote that she is starting the interaction. Depending

on the application, P1 might be performing additional operations compared to other participants.

9.2.2 Server-Assisted Privacy-preserving Computation

We assume that participants, P1, . . . , PN , wish to jointly compute a function f(x1, . . . , xN ),

without revealing any information about their private input, (x1, . . . , xN ), beyond what can be de-

duced from the output of the function. Note that one or all participants may receive the output of the

computation, depending on the application. Server S assists the participants in the function com-

putation. However, it learns no information about either (x1, . . . , xN ) or f(x1, . . . , xN ). In other

words, S receives and processes only encryptions of participants’ inputs. Specifically, we define the

following privacy requirements:

• Participant’s Privacy w.r.t. Server: Privacy of each participant Pi, running on input xi, is

guaranteed w.r.t. server S if no information about xi is leaked to S. Privacy is considered

as the probabilistic advantage that S gains from obtaining encrypted inputs toward learning

participants’ actual inputs. Formally, we say that the algorithm A is Private w.r.t. Server

if no polynomially bounded adversary A can win the following game with probability non-

negligibly over 1/2. The game is between A (playing the role of the server) and a challenger

Ch:

1. Ch executes setup operations and computes public parameters (if any).

2. A, on input the public parameters, selects two inputs (w0, w1).

3. Ch picks a random bit b ←r {0, 1} and interacts with A by following the computation

on behalf of a participant, on input the public parameters and private input wb.

4. A outputs b′ and wins if b′ = b.
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We anticipate that, since S only receives encrypted inputs, privacy will be reduced to the

security of the encryption algorithm.

• Participant’s Privacy w.r.t. Other Participants: Privacy of each participant Pi, running on

input xi, is guaranteed w.r.t. other participants Pj( ∀j 6= i), if no information about xi is

leaked to Pj , beyond what can be inferred from f(x1, . . . , xN ). Privacy is considered as

the probabilistic advantage that Pj gains from the protocol execution in learning Pi’s input.

Specifically, we define the advantage of Pj of identifying the input of any Pi, i.e., wi (for

Pi 6= Pj), in the algorithm A as

AdvPj (A;Pi) =

∣∣∣∣PrPj [w′i = wi]−
1

2

∣∣∣∣
where w′i is Pj’s guess of Pi’s input wi.

We say that the algorithm A is Private w.r.t. Other Participants if no polynomially bounded

adversary A, playing the role of Pj in A, has a non-negligible advantage AdvPj (A;Pi) for

any Pi 6= Pj .

9.2.3 Trust Assumptions

We assume participants to be semi-honest, i.e., they faithfully follow protocol specifica-

tions and do not misrepresent any information on their inputs, as per Goldreich’s definitions [77].

However, during or after protocol execution, they try to infer additional information about other par-

ticipants’ inputs. Also, we assume that participants have a minimum degree of knowledge among

each other, e.g., they belong to the same organization or community. Thus, they do not have any

incentive to deviate from the protocol.

The server is assumed to be semi-trusted, i.e., it follows protocol specifications and does

not collude with any participants. It is not trusted with any private data.

9.3 Sharing Interests with Privacy

We consider the following application examples:

1. A smartphone application provides users with the possibility of calling privacy-preserving

polls: a user can request to a community of users to indicate their preferences on a topic of

interest, in order to jointly determine the most popular choice. Nothing should be revealed

about a single user’s preferences or other choices beyond the most popular one.
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2. Members of a virtual community (e.g., AC Milan fans) want to share their location only to

discover if there is at least a given number of members around the same location (e.g., 10 fans

in the same pub to watch a given match).

3. A group of UC Irvine commuters want to find out common routes to join a carpooling pro-

gram, i.e., they agree on sharing rides from their homes (or from a meeting location) to

a common destination, e.g., as a work center. Nonetheless, information about their routes

should be revealed only for matching commutes.

4. A group of Nokia employees are willing to share their availabilities, e.g., to discover times

and locations at which at least 75% of them are available (if any), but do not want to reveal

whether or not they are free in any other timeslots.

The four examples above exhibit some similar features: users are not willing to reveal

their information wholesale, rather, they want to find only matching interests.

Motivated by these examples, we introduce the problem of Privacy-preserving Interest

Sharing (PIS). We intentionally describe PIS as a broad notion and we present a generic efficient

and provably private cryptographic construct that targets a diversified set of scenarios.

PIS employs a semi-trusted server – introduced in Section 9.2 – to assist the computation.

However, the server is never trusted with any user data (as opposed to a non privacy-preserving ap-

proach requiring all users to submit their interests and let the server find the matches). An additional

trivial approach would require users to share a symmetric key, use a (deterministic) symmetric-key

encryption scheme, and let the server match ciphertexts. However, establishing and managing secret

keys is not viable in several settings, like in scenarios 1-3 above. For instance, in (1) the user calling

the poll does not even know who is participating. Moreover, if the key is compromised, all interests

of all participants would be revealed.

Informal Definition of PIS. We assume N participants, P1, . . . , PN , where P1 acts as the Initiator

of the protocol. Each participant Pi (for i ∈ [1, N ]) holds a list of interests of size mi. Without

loss of generality, we assume that ∀i,mi = m (i.e., all lists are equal size) to ease presentation.

The interests of each participant Pi are denoted as {ωi:1, . . . , ωi:m} – i.e., participants’ inputs in

the PIS protocol. The goal of PIS is to find the interests that are shared among at least a threshold

of ϑ participants. Participants’ privacy needs to be guaranteed by ensuring that, after protocol

execution, the participants do not learn anything beyond matching interests. Also, server S learns

no information about any participant’s input. (Recall privacy definitions from Section 9.2.2).
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9.3.1 PIS Protocol Specification

Initiator P1 Server Participant Pi (i = 2, . . . , N)

(On input {ω1:1, . . . , ω1:m}) (On input {ωi:1, . . . , ωi:m})

α←r Z∗q For 1 ≤ j ≤ m

ri:j ←r Z∗q

µi:j = H1(ωi:j)
ri:j

(relay)
{µi:1, . . . , µi:m}oo

For 1 ≤ j ≤ m
{µi:1, . . . , µi:m}oo

µ′i:j = (µi:j)
α {µ′i:1, . . . , µ′i:m}

// (relay)
For 1 ≤ j ≤ m

{µ′i:1, . . . , µ′i:m}
// For 1 ≤ j ≤ m

t1:j = H2(H1(ω1:j)
α) ti:j = H2((µ

′
i:j)

1/ri:j )

T (1) = {t1:1, . . . , t1:m}
//

T (i) = {ti:1, . . . , ti:m}oo

Match
(
T (1), . . . , T (N)

)
{t∗|t∗is in at least ϑ T (i)’s}
oo

{t∗|t∗is in at least ϑ T (i)’s}
//

∀t∗ : Output associated ω1:j ∀t∗ : Output associated ω1:j

[Protocol is run on common input (p, q,H1(·), H2(·)). All computation is mod p.]

Figure 9.1: Our Private Interest Sharing (PIS) Protocol.

Our PIS construction is illustrated in Figure 9.1 and works as follows:

Setup

During setup, the server, S, publishes public parameters (p, q, g,H1, H2), where: p, q are

prime numbers s.t. q|p − 1, g is a generator of the subgroup of size q, H1 : {0, 1}∗ → Z∗p, and

H2 : {0, 1}∗ → {0, 1}τ (given a security parameter τ ) are cryptographic (i.e., collision-resistant)

hash functions. The Initiator, P1, privately picks a random α ←r Z∗q . (Note that all computations

below are performed mod p.)

Interaction

In the interactive phase of the protocol, each participant Pi (for i ∈ [2, N ]), on input

{ωi:1, . . . , ωi:m}, for each j ∈ [1,m]: (1) picks ri:j ←r Z∗q , (2) computes and sends S: µi:j =

H1(ωi:j)
ri:j .
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Next, S forwards all received µi:j’s to P1, who, in turn, responds to participants (via S)

with µ′i:j = (µi:j)
α.

Finally, each participant Pi (for i ∈ [2, N ]), upon receiving µ′i:j (j ∈ [1,m]), computes

and sends S:

T (i) =
{
ti:j | ti:j = H2

[
(µ′i:j)

1/ri:j
]}

j∈[1,m]

Observe that ti:j = H2[H1(ωi:j)
α]. Also, note that, as opposed to µi:j’s, S does not

forward ti:j’s to any participant.

Matching

During the matching phase, the Initiator P1, for j ∈ [1,m] sends S:

T (1) = {t1:j | t1:j = H2 [H1(ω1:j)
α]}j∈[1,m]

Next, S identifies all the items t∗ that appear in at least ϑ different T (i) sets, and outputs

them to the original participants that contributed them.

Finally, these participants learn (threshold) interest matching by associating t∗ to values

ωi:j producing it.

Remark. PIS can (straightforwardly) be applied to the application examples discussed above.

For instance, a user may call for a poll on the best bars in the city, e.g., using a social networking

application on her smartphones. Every participant in the poll would engage in a PIS computation

as described above. At the end of the poll, the server, e.g., the social network provider, outputs the

value t∗ that appears most times to the participants, who can then reconstruct the most “popular”

bar.

Complexity of PIS. The computational complexity of the protocol amounts to (N · m) expo-

nentiations for the Initiator, whereas, all other participants perform (2m) modular exponentiations.

We pick p to be 1024-bit long, and q of size 160-bit (with no loss of security). Thus, using short

exponents (160-bit), modular exponentiations in the protocol are very efficient. Communication

overhead for the server and the Initiator amounts to (N ·m) group elements (i.e., 1024-bit) and hash

values (i.e., 160-bit using SHA-1 [59]), whereas, for the other participants, the overhead amounts to

m group elements and hash values.
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9.3.2 Privacy of PIS

Our PIS construction provides provable-privacy guarantees. Specifically, Privacy w.r.t.

Server is guaranteed as the server S only receives outputs of the one-way functions H1(·), H2(·),

whose inputs cannot be “forged” unless S knows either α (secret to P1) or some ri:j (secret to Pi’s).

Thus, if an adversary A violates Privacy w.r.t. Server, then we can construct another adversary that

violates the collision resistance of the hash functions H1(·), H2(·).

Next, Privacy w.r.t. Other Participants immediately stems from security arguments of the

Private Set Intersection technique in [100], proven secure under the One-More-DH assumption [14],

on which our PIS protocol is based. In other words, if any participant Pj has a non-negligible

advantage AdvPj (A) (defined in Section 9.2.2), then we can construct an attack to the Private Set

Intersection protocol in [100].

Recall, however, that [100] only provides a two-party protocol, while our variant extends

to multiple parties. We minimize overall overhead using the semi-trusted public server: in fact,

available multi-party PSI techniques [108] require several rounds of computation and computational

complexity at least quadratic in the size of participants’ inputs.

9.4 Private Scheduling

In this section, we explore the concept of Private Scheduling for smartphones. Recall ex-

ample (4) from Section 9.3: a group of employees want to schedule a meeting and select a timeslot

such that at least a given number of users are free. We now go a step further: instead of assigning

a binary value to time periods or to proposed locations (i.e., available/busy, suitable/unsuitable), we

consider non-binary costs. For instance, the smartphone can calculate the carbon footprint or the

gas cost required to reach a given destination, or how much the user is tied to a busy timeslot. Such

a flexibility is particularly appealing in the mobile environment, where users carry their device any-

time and anywhere. Thus, smartphones can infer their preferences, habits, routes, and assist them in

determining availabilities and preferred locations. Therefore, we assume that a cost, between 0 and

cmax, is assigned to each timeslot and/or location. (In the rest of this chapter, we refer to “timeslots”

only, while referring to timeslots and/or locations.)

Users’ calendars potentially contain a high volume of sensitive information. Exposed

availabilities could be misused to infer affiliation, religion, culture, or correlated to other users.

Hence, our goal is to allow users to find the most suitable timeslot – i.e., the one with the minimum
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sum of costs – while learning nothing about single users’ availabilities. Our techniques employ the

semi-trusted server introduced in Section 9.2 to aggregate users’ encrypted inputs. One user, de-

noted as the Initiator, initiates the protocol. She accepts a slightly increased computational overhead

– a reasonable assumption, considering she is the one willing to schedule the meeting. In return,

only the Initiator obtains the outcome of the protocol.

The Private Scheduling Problem. Private Scheduling involvesN different participants, P1, . . . , PN .

P1 is the Initiator of the protocol. Each Pi (for i ∈ [1, N ]) maintains a private calendar, divided into

m timeslots. Typical timeslot granularities are 30 or 60 minutes (however, one can tune it according

to users’ preferences). Each Pi assigns a cost ci:j (0 ≤ ci:j ≤ cmax), for each timeslot j ∈ [1,m]

(e.g., ranging from 0 to 10).

Definition 9.1. (Aggregated Cost.) For a given timeslot j, the aggregated cost acj =
∑N

i=1 ci:j

denotes the sum of all participants’ cost.

Definition 9.2. (Threshold.) A threshold value, ϑ, depending on cmax andN , denotes the maximum

acceptable aggregated cost to consider a timeslot to be suitable. We consider ϑ = f(cmax, N). A

typical value could be ϑ = cmax
2 ·N .

The goal of Private Scheduling is to output to the Initiator all timeslots with aggregated costs smaller

than ϑ (if any).

9.5 PrivSched-v1

We now present our first technique for Private Scheduling, PrivSched-v1. Before, we

provide some technical background.

Preamble. PrivSched-v1 relies on the Paillier Cryptosystem [133], a public-key probabilistic

encryption scheme that provides additive homomorphism – i.e., the product of two ciphertexts de-

crypts to the sum of the corresponding plaintexts. We refer to Chapter 2.2 for a detailed description.

Following the intuition of [55], additively homomorphic cryptosystems, such as Paillier, can be used

to compute homomorphic minimization (or maximization), i.e., one can find the minimum of some

integers while operating on ciphertexts only, thus, without learning any information on those inte-

gers. We extend this technique to obtain the homomorphic argmin, i.e., to additionally find which

integer corresponds to the minimum. We use a tagging system based on powers of 2. This exten-
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sion is, to the best of our knowledge, the first attempt in this direction, thus, it can be of independent

interest.1

We encode integers in a unary system: to represent an integer X , we repeat X times

encryptions of 0’s. We denote this encoding technique as vector-based representation (vbr):

x −→
vbr

−→
X = [E(0), . . . , E(0)︸ ︷︷ ︸

x times

, E(1), E(z), . . . , E(z)]

E(·) denotes encryption using Paillier, and z a random number in the Paillier setting.

(This is used for padding).

Then, we raise each element of the vbr to the value of a tag – a power of 2. (The tagging is

performed on ciphertexts, rather than plaintexts, as it will become clear later in the chapter). After

tagging, E(0) remains E(0), while E(1) becomes E(tag): this allows to identify which value

corresponds to the minimum, after the homomorphic minimization is performed. (E(·) denotes

encryption using Paillier, and z a random number in the Paillier setting).

Vector
−→
X has to be large enough to contain each possible domain value. Also, since the

Paillier cryptosystem is probabilistic, the elements E(·) (and the vectors too) are mutually compu-

tationally indistinguishable and do not reveal any information about plaintext values.

9.5.1 PrivSched-v1 Protocol Specification

To compute the homomorphic argmin, we use a tagging system over a vector-based rep-

resentation, performed by each participant. First, the Initiator creates (and transfer to the server S)

a vector-based representation of her costs, for each timeslots. Then, S sequentially asks other par-

ticipants to update vectors with their own costs. (Recall that vectors do not reveal any information

about the underlying inputs). Finally, S computes (and transfer to the Initiator) the homomorphic

argmin and the Initiator learns the suitable timeslots (if any) upon decryption.

One crucial goal is to minimize computation overhead on the smartphones. Note that

vbr’s are relatively short, as we deal with small integers if small costs are chosen (e.g., cmax = 10).

Nonetheless, we still want to minimize the number of exponentiations to compute the vbr. To this

end, we compute single encryptions of 0, 1, z, and a random rand = E(0), where encryption

of 0 is performed using a random number w, chosen with the same size as the Paillier modulus.
1E.g., the computation of homomorphic argmin may be useful for privacy-preserving data aggregation in sensor

networks or urban sensing systems [144].
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We then re-randomize the first element in vbr with a multiplication by rand. Next, we update

rand ←r (rand)exp, where exp is a relatively small random exponent, and we continue with the

next element. We describe the details of PrivSched-v1 below. The protocol is also illustrated in

Figure 9.2.

Initialization

First, the Initiator P1 generates Paillier public and private keys, denoted with pk1 and sk1,

respectively. (In the rest of this section, all encryptions/decryptions are always performed using

these keys, thus, to ease presentation, we omit them in our notation. If we need to specify the

randomness used by the encryption algorithm, we use the following notation: E(M,R) to denote

encryption of M under pk1 using the random value R).

Next, P1 computes, for each time slot j ∈ [1,m], the vbr −→vj :

−→vj = [E(0), . . . , E(0)︸ ︷︷ ︸
c1:j

, E(1), E(z), . . . , E(z)︸ ︷︷ ︸
ϑ−c1:j

]

Finally, P1 sends {−→v1 , . . . ,−→vm}, along with the identities of the other participants, to S.

Aggregation

After receiving the initial input from P1, the server S sequentially forwards {−→v1 , . . . ,−→vm}
to each participant involved in the protocol.

Next, each Pi (for i ∈ [2, N ]) adds her cost ci:j to each vector −→vj (for j ∈ [1,m]) by

shifting the elements of each vector ci:j positions right, and replacing them by E(0):

−→vj ←r
−→vj >> ci:j

def
= [E(0), . . . , E(0)︸ ︷︷ ︸

ci:j

, vj,1, . . . , vj,ϑ−ci:j ]

To mask her modifications, Pi re-randomizes the vectors −→vj ’s by multiplying the generic

element vj,k by a random E(0). Finally, she sends the updated {−→v1 , . . . ,−→vm} back to S.

This phase is repeated, sequentially, for each participant, P2, . . . , PN : at the end S obtains

the final {−→v1 , . . . ,−→vm} where, for j ∈ [1,m]:

−→vj = [E(0), . . . , E(0)︸ ︷︷ ︸
acj

, E(1), E(z), . . . , E(z)︸ ︷︷ ︸
ϑ−acj

]
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Initiator P1 Server Participant Pi (i = 2, . . . , N)

(On input {c1:1, . . . , c1:m}) (On input {ci:1, . . . , ci:m})

0 ≤ c1:j ≤ cmax 0 ≤ c1:j ≤ cmax

For 1 ≤ j ≤ m
{P1, ..., PN}

//

−→vj = [vj,1, . . . , vj,ϑ]

For 1 ≤ k ≤ ϑ

vj,k =


E(0) if k < c1:j

E(1) if k = c1:j

E(z) if k > c1:j

{−→v1 , . . . ,−→vm}
// (relay)

{−→v1 , . . . ,−→vm}
// P2:

For 1 ≤ j ≤ m

where z 6= 1, 0 ∈R Zn Add ci:j times E(0) at

the beginning of −→vj{−→v1 , . . . ,−→vm}oo
. . . // do the same sequentially
. . .oo for P3 . . . PN

For 1 ≤ k ≤ ϑ

qk =
∏ϑ
j=1(vj,k)

2j

{q1, ..., qϑ}oo
For 1 ≤ k ≤ ϑ
If (D(qk)! = 0)

min = k − 1

φ = D(qk)

binary decomp of φ

leads to suitable timeslots chosen suitable timeslot //

[Protocol is run on common input (N,m, ϑ, pki).]

Figure 9.2: Our PrivSched-v1 Protocol.

Minimization

Upon receiving the final {−→v1 , . . . ,−→vm}, S computes the homomorphic argmin: first, S

raises each element of −→vj to 2j ; then, it computes a vector −→q . (The sum of all tags should not
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exceed the size of the Paillier modulus):

−→
v′j = (−→vj )2

j
= [(vj,1)

2j , (vj,2)
2j , ..., (vj,ϑ)2

j
]

−→q = [q1, q2, . . . , qϑ]
def
= [

m∏
j=1

v′j,1, . . . ,

m∏
j=1

v′j,ϑ] =

= [E(0), . . . , E(0)︸ ︷︷ ︸
min

, qmin+1, . . . , qϑ]

Next, S sends −→q to the Initiator P1, that decrypts each element of −→q using sk1. The

minimum aggregated cost corresponds to the number of consecutive 0’s in the first positions of −→q .

Also, qmin+1 decrypts to the sum of tags corresponding to the timeslot(s) producing the minimum

aggregated cost. We denote this sum with φ. P1 retrieves the index of this timeslot by observing

which bits are equal to 1 in the binary decomposition of φ. P1 may additionally retrieve the 2nd

minimum timeslot by subtracting (φ · z) from the non-null decrypted elements of −→q . Iterating this

method leads to retrieval of all timeslots with aggregated cost less than ϑ.

Observe that ϑ is a system parameter and can be tuned to meet different requirements.

Smaller values of ϑ result into a smaller −→q vector: this would reduce computations performed by

participants and by the server, as well as the total bandwidth overhead. Also, the knowledge of P1

on aggregated cost values will be limited to fewer timeslots, while the likelihood that the protocol

execution terminates with no suitable timeslot would be increased. Therefore, an appropriate choice

of ϑ depends on the specific setting and should be agreed on by the participants.

At the end of the protocol, only P1 learns the timeslots with aggregated cost smaller than

the threshold, and takes appropriate actions to schedule a meeting. Standard encryption techniques

can be used by P1 to multi-cast the meeting invitation to the other participants.

Complexity of PrivSched-v1. During each protocol execution, the Initiator performs 4 Paillier

encryptions: E(1), E(0), E(z) and rand = E(0, w), where w is a random value chosen with

the same size as the Paillier modulus. To create vector −→v1 , the Initiator selects the encryptions

E(0), E(1) or E(z), and multiplies them by a different rand to perform re-randomization. Thus,

the Initiator performs (m · ϑ) multiplications and small exponentiations (to create {−→v1 , . . . ,−→vm}),
and at most ϑ decryptions (to retrieve suitable timeslots). Alternatively, to create the vector, a

pool of pre-computed E(0)’s can be used: in this case, the Initiator performs 3 encryptions and

(m · ϑ) multiplications with pre-computed E(0)’s. All other participants perform 2 encryptions

(E(0) and rand), and (m · ϑ) multiplications and small exponentiations (to update the vectors).
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If pre-computations are used, they perform 1 encryption and (m · ϑ) multiplications. The server

performs (m · ϑ) exponentiations for the tagging and (m · ϑ) multiplications to create vector −→q .

The communication overhead amounts to (m·ϑ) ciphertexts (i.e., 2048-bit each) for all participants.

Additionally, the Initiator receives ϑ ciphertexts (in −→q ).

9.5.2 Privacy of PrivSched-v1

All vectors are encrypted under the Initiator’s public key, thus, neither the participants

nor the server can violate the privacy requirements described in Section 9.2.2, by virtue of the

CPA-security of the Paillier cryptosystem [133]. In other words, if Privacy w.r.t. Server is not

guaranteed, then one can construct an adversary violating the Decisional Composite Residuosity

assumption [133].

Then, Privacy w.r.t. Other Participants is straightforwardly guaranteed, since participants

only get (from the server) the minimum of the aggregated costs and no other information about

other participants’ inputs.

Given that the server and the Initiator do not collude, the server computes the minimiza-

tion, blindly, i.e., over encrypted data. Collusion between the server and the Initiator may lead

to violate other participants’ privacy, while a collusion between the server and other participants

would be irrelevant, as they could not decrypt. However, if N − 1 participants colluded with the

server against the Initiator, they could recover (potentially) valuable information from the output

of the protocol. Collusions can be thwarted using Threshold Cryptography [140] and, specifically,

the threshold version of Paillier cryptosystem, presented in [63]. Recall that in a (t,N)-threshold

cryptosystem, the private key to decrypt is shared between all the participants. Hence, to decrypt

a ciphertext, t over N participants should agree and execute some computations to jointly perform

the decryption. Using a threshold version of Paillier cryptosystem ensures that the Initiator, even

if colluding with the server, cannot maliciously decrypt more information than she should. Note,

however, that at this stage our protocol implementations do not address collusion between partici-

pants.

9.6 PrivSched-v2

A potential slow-down in PrivSched-v1 may result from each participant computing or

updating the vector-based representation (vbr) of her costs. This increases the communication over-
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head and requires each participant to compute operations sequentially, one after the other. Therefore,

we introduce a new protocol variant, called PrivSched-v2. Participants encrypt directly their costs

without using the vbr, thus, we can perform the aggregation in parallel, instead of sequentially, since

we no longer use the vbr at each participant’s side. This modification reduces server’s waiting time

and improves the overall performance. The server relies on a mapping, pre-computed by the Ini-

tiator, to transform each aggregated cost into its vbr and perform the homomorphic argmin. Again,

our improvements might be of independent interest in the context of homomorphic computation.

9.6.1 PrivSched-v2 Protocol Specification

We present our modified protocol – namely, PrivSched-v2 – below. The PrivSched-v2

protocol is also illustrated in Figure 9.3.

Setup

First, each participant Pi computes public/private keypairs (pki, ski). Public keys, pki,

are distributed, before protocol execution, using the server.

The Initiator P1 computes a mapping, MAP , and sends it to the server S. S will use it

during aggregation to transform each aggregated cost into the corresponding vbr. Assuming Nmax

is the maximum number of participants, ϑmax = f(cmax, Nmax), and (a1, y1) are random values

in the Paillier setting generated by P1, MAP is pre-computed by P1 as follows:

E(0, a1) −→ [E(1), E(z), E(z), E(z), . . . , E(z)]

E(1, a1y1) −→ [E(0)︸ ︷︷ ︸
1

, E(1), E(z), E(z), . . . , E(z)]

... −→ ...

E(ϑmax, a1y
ϑmax
1 ) −→ [E(0), E(0), E(0), E(0), . . . , E(0)︸ ︷︷ ︸

ϑmax

]

Note that y1 and a1 randomize the mapping and prevent S from learning any private information.

y1 is raised to the value of the aggregated costs in order to randomize the costs differently. Since

(y1)
0 = 1, we add the random value a1 to address the special case where an aggregated cost equals

0. In addition, a1 simplifies future updates: Pi would only need to change this random value to

re-randomize the mapping without performing exponentiations again. Finally, we let P1 shuffle

the mapping to randomize the position of each aggregated cost. (Recall that encryptions are again

computed using pk1).
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Initiator P1 Server Participant Pi (i = 2, . . . , N)

(On input {r1, a1, y1, c1:1, . . . , c1:m}) (On input {ri, ci:1, . . . , ci:m})

r1, a1, y1 ←r Z∗n ri ←r Z∗n

0 ≤ c1:j ≤ cmax 0 ≤ ci:j ≤ cmax
{P1, ..., PN}

//

For 2 ≤ i ≤ N Pick xi ←r Zn

〈xi, E(0, y1)〉pki // (relay)
〈xi, E(0, y1)〉pki //

For 1 ≤ j ≤ m For 1 ≤ j ≤ m

ec1:j = E(c1:j , a1 · rj1 · y
c1:j
1 ) eci:j = E(ci:j , r

j
i · y

ci:j
1 )

{ec1:1, ..., ec1:m}
// For 1 ≤ j ≤ m

{eci:1, ..., eci:m}oo

eacj =
∏N
i=1 eci:j

er1 = E(−
∑N
i=2 xi, r1) eri = E(xi, ri)

er1 // E(0, ar) =
∏N
i=1 eri

erioo

where ar =
∏N
i=1 ri mod n2

For 1 ≤ j ≤ m

Find eacj in MAP (1st column) · E(0, ar)j

and store corresponding mapping as −→vj

For 1 ≤ k ≤ ϑ

qk =
∏m
j=1(vj,k)

2j

{q1, ..., qϑ}oo
For 1 ≤ k ≤ ϑ
If (D(qk)! = 0)

min = k − 1

φ = D(qk)

binary decomp of φ

leads to suitable timeslots chosen suitable timeslot //

[Protocol is run on common input (N,m, ϑ, pki,MAP ).]

Figure 9.3: Our PrivSched-v2 Protocol.

Initialization

First, P1 picks a random r1, then, for each time slot j ∈ [1,m], computes and sends S the

value ec1:j :

ec1:j = E
(
c1:j , a1 · (r1)j · (y1)c1:j

)
=

= E(c1:j , a1) · (E(0, r1))
j · (E(0, y1))

c1:j
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Next, P1 picks N − 1 random values, (x2, . . . , xN ). For each i ∈ [2, N ], P1 encrypts

〈xi, E(0, y1)〉 under the public key pki of each participant Pi and sends them to S, that forwards to

the corresponding participant. (We need this encryption to hide these values from the server).

Finally, P1 computes er1 = E(−(
∑N

i=2 xi), r1) and sends it to S.

Aggregation

First, each participant Pi generates a random value ri in the Paillier setting generated by

P1. Then, for each timeslot j ∈ [1,m], Pi encrypts her cost ci:j , using as randomness the decrypted

E(0, y1):

eci:j = E (ci:j , ri · (y1)ci:j )

= E(ci:j , 1) · (E(0, ri))
j · (E(0, y1))

ci:j

Then, Pi sends S {eci:1, . . . , eci:m} and E(xi, ri).

Next, S computes the (encrypted) aggregated cost of each timeslot j ∈ [1,m], using

Paillier’s homomorphism:

eacj
def
=
∏N
i=1 eci:j = E

(
acj , (ar)j · a1 · (y1)acj

)
where ar def

=
∏N
i=1 ri mod n2 (where n is the public Paillier modulus of pk1). Finally, S recon-

structs:

E(0, ar) = E(−(
N∑
i=2

xi), r1) · E(x2, r2) · . . . · E(xN , rN )

Minimization

In this phase, the server S computes the (encrypted) minimum aggregated cost and sends

it to P1. To this end, S first transforms each encrypted aggregated cost (eacj) into its vbr. Next,

S computes the vbr using the mapping MAP and the value E(0, ar), namely, for each timeslot

j ∈ [1,m], S:

(i) Multiplies the 1st column of MAP by E(0, ar) and gets: (recall that the position of each
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aggregated cost is shuffled in the mapping stored by the server).

E(0, arja1) −→ [E(1), E(z), E(z), . . . , E(z)]

E(1, arja1 · y1) −→ [E(0)︸ ︷︷ ︸
1

, E(1), E(z), . . . , E(z)]

E(2, arja1 · y21) −→ [E(0), E(0)︸ ︷︷ ︸
2

, E(1), E(z), . . . , E(z)]

... −→ ...

E(ϑmax, ar
ja1 · y1ϑmax) −→ [E(0), E(0), E(0), . . . , E(0)︸ ︷︷ ︸

ϑmax

]

(ii) Finds eacj in MAP and stores the right side of the mapping as −→vj .

(iii) Increments j and goes back to (i).

Then, S starts the homomorphic argmin using vectors −→vj , i.e., the vbr of each aggregated

cost, using the following tagging technique. The server raises each element of −→vj to 2j (for j ∈
[1,m]):

−→
v′j = (−→vj )2

j
= [(vj,1)

2j , (vj,2)
2j , ..., (vj,ϑ)2

j
]

Next, the server computes the vector −→q and sends it to P1:

−→q = [q1, q2, . . . , qϑ]
def
=

 m∏
j=1

v′j,1, . . . ,

m∏
j=1

v′j,ϑ


= [E(0), . . . , E(0)︸ ︷︷ ︸

min

, qmin+1, . . . , qϑ]

Finally, P1 decrypts each element of −→q using sk1. As in PrivSched-v1, the minimum

aggregated cost corresponds to the number of consecutive 0’s in the first positions of −→q . qmin+1

decrypts to the sum of tags corresponding to the timeslot(s) producing the minimum aggregated

cost. Again, we denote this sum with φ. P1 retrieves the index of this timeslot by observing which

bits are equal to 1 in the binary decomposition of φ. P1 may additionally retrieve the 2nd minimum

timeslot by subtracting (φ · z) from the non-null decrypted elements of −→q . Iterating this method

leads to retrieval of all timeslots with aggregated cost smaller than ϑ.

At the end of the protocol, only P1 learns the timeslots with aggregated cost smaller than

the threshold, and takes appropriate actions to schedule the meeting. Again, standard encryption

techniques can be used by P1 to multi-cast meeting invitation to the other participants.
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9.6.2 Complexity of PrivSched-v2

During each protocol execution, the Initiator performs, in the worst case, (cmax + 3)

Paillier encryptions and (cmax + 3m) multiplications to create ec1:j for j ∈ [1,m]. In addition,

the Initiator needs N − 1 Paillier encryptions to protect 〈xi, E(0, y1)〉 and at most ϑ decryptions

to retrieve suitable timeslots. Each participant performs one decryptions to get 〈xi, E(0, y1)〉, and

(cmax + 2) Paillier encryptions plus (cmax + 3 ·m) multiplications to create encrypted costs. The

server performs (m · ϑ) exponentiations for tagging and (m · ϑ) mults to create −→q . The communi-

cation overhead amounts to m ciphertexts (i.e., 2048-bit each) for all participants. Additionally, the

Initiator receives ϑ ciphertexts (in −→q ).

9.6.3 Privacy of PrivSched-v2

Participants only receive E(0, y1) and E(xi), encrypted under the Initiator’s public key,

thus, similar to PrivSched-v1, neither participants nor the server can violate the privacy requirements

described in Section 9.2.2, by virtue of the CPA-security of the Paillier cryptosystem [133]. The

Initiator gets the vector −→q containing only suitable timeslots (i.e., whose aggregated cost is smaller

than ϑ). Considerations about possible collusion are the same as in PrivSched-v1, thus, we do not

repeat them here.

Since equal aggregated costs may appear at the same line of the mapping, the server

could detect repeated aggregated costs. Considering that participants provide weekly or monthly

calendar, the highest costs is probably used for nights, weekends, holidays, and busy timeslots are

most likely the ones appearing the most. Therefore, the server could infer timeslots with the highest

cost counting the number of collisions in the mapping. One possible countermeasure is to use a

secret permutation of the timeslots known only by the participants. This way, information obtained

by the server is obfuscated and she cannot get any information about date/time of repeated timeslots.

Removing nights, weekends, or holidays, will also modify the distribution of busy timeslots which

will tend to be closer to the most available ones, thus, reducing the probability of correctly guessing

which timeslots correspond to the highest cost.

9.7 Symmetric-Key Private Scheduling: S-PrivSched

The PrivSched-v1 and v2 protocols involve a limited yet non-negligible number of public-

key cryptographic operations. Although our experimental analysis (presented in Section 9.8) pro-
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vides encouraging performance results for PrivSched-v1 and v2, we now present yet another con-

struction, S-PrivSched (Symmetric PrivSched), that only involves symmetric-key operations, and

reduces computational and communication overheads. Our intuition is the following: Participants

establish a shared secret, e.g., the Initiator broadcasts it using an “out-of-band” channel, such as

SMS, or she encrypts it using the public key of each of the other participants. Then, we use an

additively homomorphic symmetric-key cryptosystem (e.g., the one proposed in [34]) to perform

cost aggregation.

Preamble. S-PrivSched uses the cryptosystem in [34], a tailored modification of the Vernam

cipher [146] to allow plaintext addition to be done in the ciphertext domain, proven to achieve

security (more precisely, indistinguishability) against chosen plaintext attacks (IND-CPA). Below,

we review its algorithms:

• Encryption:

1. Represent the message msg as an integer m ∈ [0,M − 1], where M is the modulus.

(See below).

2. Let k be randomly generated keystream, where k ∈ [0,M − 1].

3. Compute ct = Enck(m) = (m+ k) mod M .

• Decryption: Deck(ct) = (ct− k) mod M = m

• Addition of ciphertexts: Let ct1 = Enck1(m1), ct2 = Enck2(m2). Aggregated ciphertext:

ct = ct1 + ct2 mod M = Enck(m1 +m2) (where k = k1 + k2).

Observe that M needs to be sufficiently large: 0 ≤ msg < M , or
∑N

i=1mi < M if N

ciphertexts are added.

Although above we assume k to be randomly generated at all times, one can generate

a single master key K and derive successive keys as the output of an appropriate pseudorandom

function [78], or the output of a length-preserving hash function (as shown in [34]).

9.7.1 S-PrivSched Protocol Specification

We now present S-PrivSched (also illustrated in Figure 9.4). We use the same system

model introduced for the PrivSched-v1 and v2 constructs, thus, we do not repeat it here.
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[Public Parameters: t,m, n,M ]

User Pi (i = 1, . . . , N) Server
(On input sk, {ci:1, . . . , ci:m})

For 1 ≤ j ≤ m

ki:j = H1(sk||i||j||t)

eci:j = ki:j + ci:j
{ec1:1, . . . , ec1:m}

//
For 1 ≤ j ≤ m

eacj =
(∑N

i=1 eci:j
)
modM

P1: For 1 ≤ j ≤ m
{eac1, . . . , eacm}oo

For 1 ≤ i ≤ N

ki:j = H1(sk||i||j||t)

acj = eacj −
(∑N

i=1 ki:j
)

Figure 9.4: Our S-PrivSched Protocol.

Setup

The Initiator, P1, selects M > (cmax · Nmax), where cmax is the maximum cost partici-

pants may associate to a timeslot and Nmax the maximum number of participants.

P1 also selects a random sk ∈ [0,M − 1] and broadcasts sk and a nonce t to participants

P2, · · · , PN over an out-of-band channel. In this version of the protocol, we assume that sk is

sent over SMS, thus, we assume the cellular network operator does not eavesdrop SMS traffic and

collude with the (scheduling) service provider. One can also relax this assumption by using the

public keys of all other participants to encrypt sk and share it over insecure channels. However, this

comes at the cost of N − 1 additional asymmetric encryptions.

Initialization

Each participant (Initiator included), Pi (for i ∈ [1, N ]), for each timeslot j ∈ [1,m],

computes:

• ki:j = H1(sk||i||j)

• eci:j = ki:j + ci:j

and sends {eci:1, . . . , eci:m} to the server S.
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Aggregation

Upon receiving {eci:j} i ∈ [1, N ], j ∈ [1,m], S aggregates the costs, i.e.:

• Computes eacj = (
∑N

i=1 eci:j) mod M ∀j ∈ [1,m]

• Sends {eac1, . . . , eacm} to P1

Minimization

P1 obtains the aggregated costs upon decryption:

• ki:j = H1(sk||i||j) ∀i ∈ [1, N ], j ∈ [1,m]

• acj = ecj − (
∑N

i=1 ki:j) ∀j ∈ [1,m]

Finally, P1 obtains aggregated costs for each timeslot: she computes the timeslot(s) with

minimum cost and takes appropriate actions to schedule the meeting.

Complexity of S-PrivSched. All the participants only perform symmetric key operations, specifi-

cally, (N ·m) decryptions/subtractions (Initiator) and m encryptions/additions (participants). Com-

munication overhead amounts to m ciphertexts for each participant and N ·m for the server.

9.7.2 Privacy of S-PrivSched

Privacy of S-PrivSched stems from the security of the cryptosystem in [34]. Privacy w.r.t.

the Server S is guaranteed as S only receives ciphertexts. Also, Privacy w.r.t. Other Participants

is straightforward since participants never receive other participants’ costs. Also, P1 only obtains

aggregated costs. Compared to Paillier-based PrivSched constructs, however, P1 obtains aggregated

costs for all timeslots. In fact, we do not know how to let the server compute the minimization us-

ing the homomorphic symmetric-key cryptosystem. Considerations and possible countermeasures

about potential collusion are somewhat similar to PrivSched-v1, thus, we do not repeat them here.

9.8 Performance Analysis

All proposed protocols were implemented on Nokia N900 smartphones. We developed a

prototype application for Private Scheduling, instantiating PrivSched-v1 and v2, S-PrivSched, and
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we used PIS to implement a threshold binary version of Private Scheduling (see scenario (4) in Sec-

tion 9.3). Recall that the four algorithms provide (slightly) different privacy properties (reviewed

below) and require somewhat different system settings (e.g., key management). This leads to differ-

ing computational and communication costs. Thus, our goal is not to compare their performance,

rather, to assess their practicality for real-world deployment and to provide an indication of the

overhead experienced by users.

In our prototypes, we used the Qt framework [129] and the open-source cryptographic

libraries libpaillier [18] and libgmp [64], on several Nokia N900 devices (equipped with a 600 MHz

ARM processor and 256 MB of RAM). We also used a Dell PC with 2.27 GHz CPU (16 cores)

and 50 GB of RAM to instantiate the semi-trusted server. We ran tests with an increasing number

of participants (ranging from 2 to 8) and a fixed number of timeslots, i.e., 7 · 24 = 168 to cover

one week with one-hour granularity, with randomly-generated calendars. We define cmax = 10 and

ϑ = cmax
2 ·N = 5N . In our tests, we used a local 802.11 Wi-Fi network.

For every algorithm, we measured the processing time of the server, the Initiator, and of

a single participant. The latter is computed as the average of processing times of all participants,

excluding the Initiator. We also evaluated the communication overhead. Results are averaged over

100 iterations. We also ran tests for a baseline protocol providing no privacy (i.e., calendars were

transmitted to the server, that computed the minimization in the clear).

Results are plotted in Figure 9.5, 9.6, and 9.7. The top row measures bytes exchanged

(using logarithmic scale), bottom row – processing times in milliseconds. Confidence intervals

were very small and omitted for visibility. (Standard deviation was smaller than 282 bytes and

280ms).

We make the following remarks:

1. As expected, PrivSched-v1, compared to its most similar counterpart (PrivSched-v2), incurs

an increased bandwidth overhead, that grows with the number of participants. Therefore, we

recommend its use only in settings where participants do not want the server to learn that

some timeslots may have equal aggregated costs.

2. PrivSched-v2 incurs a reasonable overhead and scales efficiently even when the number of

participants is increasing. Nonetheless, recall that the mapping creates a small privacy degra-

dation. Also, some limited information has to be pre-exchanged among the participants.

3. S-PrivSched incurs very low computational and communication overhead – almost negligible
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Figure 9.7: Server

compared to the baseline protocol with no privacy. However, it trades-off some of the privacy

properties, as it reveals aggregated costs of all timeslots to the Initiator, and requires the

distribution of a shared secret (e.g., via SMS).

4. PIS addresses several different applications beyond scheduling; nonetheless, it is worth ob-

serving that it is practical enough for actual deployment. The computational and communica-

tion overheads are independent of the number of participants, and incur a constant overhead,

except for the Initiator and the server – a reasonable assumption considering that the Initiator

is the one willing to start off the protocol.

We conclude that our implementations, though achieving different privacy properties in

different system settings, are practical enough for deployment. Even the most computationally

demanding protocols, such as PrivSched-v1-2, only require a few seconds in most realistic settings.

9.9 Related Primitives

The specific problems and applications investigated in this chapter bear some resemblance

with a few related primitives, that we review below. In doing so, we first discuss related cryp-

tographic constructs addressing multi-party computation problems. Next, we analyze techniques
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employing third-party services, and, finally, protocols for private scheduling and privacy-preserving

interest sharing.

Related Cryptographic Primitives. Secure multi-party Computation (SMC) [79] allows several

players, each equipped with a private input, to compute the value of a public function f over all

inputs. Players only learn the output of f , and nothing else (beyond what revealed by the compu-

tation). Generic SMC would indeed solve all the problems we consider, however, it is well-known

that MPC involves several rounds of computations, as well as computational and communication

costs far too high to be deployed on smartphones, while special-purpose protocols are generally

much more efficient.2 Multi-party Private Set Intersection [108] allows several players to privately

compute the intersection of their private sets, such that they learn nothing beyond the intersection.

Thus far, however, only techniques limited to the two-party set intersection have achieved practi-

cal efficiency. Whereas, constructs for multiple players require a number of long exponentiations

quadratic in the size of the sets [108] – well beyond the requirements of our smartphone setting.

Further, PSI constructs cannot be used for the non-binary private scheduling problem. Finally, note

that, to the best of our knowledge, there is no known construct for a private threshold set-intersection

problem, that would be relevantly close to PIS, but only for threshold set-union [108].

Server-assisted Computations. Over the last years, semi-trusted third parties have been em-

ployed to assist privacy-preserving computations. We do not consider naı̈ve approaches using fully

trusted third parties (whereto all players surrender their inputs), or requiring the existence of spe-

cific hardware or devices, such as a Trusted Platform Modules. (Whereas, semi-trusted parties are

only assumed not to collude with other players). Following Beaver’s intuition [10], [26] introduces

a semi-trusted third party to obliviously compare two numbers (e.g., to solve the millionaire’s prob-

lem [148]). [53] uses the same intuition to solve the scalar product problem. Note, however, that

these techniques are only designed for two parties and it is not clear how to adapt them to a multi-

party setting. Also, to the best of our knowledge, there is no work exploring such intuition in the

context of smartphone applications.

Private Discovery of Common Contacts. Another related problem occurs when two unfamiliar

users want to privately discover their common contacts, e.g., reveal to each other only the contacts

that they share. For instance, a smartphone user would like to interact with other users in physical

proximity (e.g., in a bar or on the subway), given that they have some common friends on a given
2For instance, the communication complexity of MPC grows quadratically with the number of participants.
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social network, e.g., Facebook. To this end, our preliminary results in [51] introduce the concept of

Private Contact Discovery and propose a cryptographic primitive involving two users, on input their

contact lists, that outputs only the list of mutual contacts (if any). The protocol prevents users from

claiming unwarranted friendships by means of contact certification.

Private Scheduling. To the best of our knowledge, there is no protocol targeting the private

scheduling problem in the setting of smartphone users. Prior work includes distributed constraint

satisfaction in a fully-distributed approach [152, 149, 110, 106, 89]. These techniques incur high

computation and communication overhead and are unpractical for mobile environments. Finally, a

protocol for binary Private Scheduling (based on homomorphic encryption) has been presented for

smartphone users, also relying on a semi-trusted server [19].

Private Interest Sharing. Besides primitives discussed above, several techniques have focused on

problems similar to Private Interest Sharing. The work in [151] proposes protocols for the nearby-

friend problem, i.e., to let two users learn whether their distance is smaller than a given radius. It

uses homomorphic encryption [133] to compute algebraic operations over encrypted data. One of

the proposed protocols, Louis, relies on a third user to assist computation and reduce overhead, i.e.,

it acts as a semi-trusted party. Thus, Louis appears somewhat similar to applying PIS to the nearby-

friend problem. However, it is not clear how to extend Louis to a multi-party setting, e.g., to learn

whether (at least) ϑ friends are nearby. Next, although in Louis input locations are two-dimension

coordinates, while we only consider locations mapped to tags or cells, Louis involves more com-

munication steps (four vs. two in PIS) and more expensive cryptographic operations (Paillier en-

cryptions vs 160-bit exponentiations). Protocols that do not involve a semi-trusted party, such as

Lester [151], incur much higher overhead and do not scale to multiple users, even if locations are

mapped to cells, such as in Pierre [151], Wilfrid [150], and NFP [37]. Finally, the work in [126]

proposes private testing of proximity, however, for only two participants. Also, the position paper

in [135] discusses how Location-Based Social Applications (LBSAs) should process friends’ loca-

tion coordinates only in their encrypted form. Furthermore, some recent results addressed location

privacy concerns in proximity-based services [117]. Finally, some of the applications envisioned

in the context of PIS or Private Scheduling (e.g., polls) also resemble e-voting problems [81]. In

reality, however, e-voting involves several different entities with specific roles and has very different

requirements.
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Chapter 10

Conclusion and Open Problems

This dissertation motivated the need for efficient privacy-preserving sharing of sensitive

information and addressed some important problems in the field. Its main contributions are:

1. PSI protocols that are appreciably more efficient than state-of-the-art. In particular, one PSI

protocol is specifically geared for limited-resource devices.

2. PSI variants with stronger privacy properties – APSI and SHI-PSI.

3. A toolkit for practical privacy-preserving sharing of sensitive information, that enables private

database querying using any efficient PSI instantiation.

4. Efficient cryptographic protocols for privacy protection in cooperative smartphone applica-

tions.

We conclude this dissertation by highlighting some open problems and items for future work:

Efficient Group Private Set Intersection. In this dissertation, we studied PSI protocols, secure

under different assumptions and adversarial models. The traditional PSI formulation only includes

two participants, server and client. However, it is not clear how to efficiently extend such techniques

to scenarios where a group of n participants (with n > 2) wish to privately compute the intersection

of their respective sets (without using a trusted or semi-trusted party). Prior work [108] proposed a

protocol for multi-party PSI, however, its computational complexity is quadratic in the size of input

sets. Therefore, multi-party PSI protocols with linear complexities still remains a challenging topic

for further research.
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Multiple Certification Authorities in Authorized Private Set Intersection. In Chapter 5, we

introduced the concept of APSI in order to prevent clients from using frivolous input sets and to

ensure that they only obtain duly authorized information. In our APSI protocols, inputs are certified

by a Certification Authority (CA). Efficiently support of multiple CAs remains to be explored.

Size-Hiding Private Set Intersection Secure in Malicious Model. Chapter 7 proposed the first

PSI construct with the size-hiding property, i.e., the size of client’s set is (unconditionally) hidden

from the other participant. Proposed protocols are efficient and provably secure under standard

assumptions, however, only in the presence of semi-honest adversary. It is not clear whether it is

possible to design Size-Hiding PSI protocols with malicious security, thus, motivating the need for

further research.

Lowering Bandwidth Overhead in Database Querying. In Chapter 8, we introduced a toolkit for

privacy-preserving sharing of sensitive information, with application to private database querying.

Proposed techniques combine provable security with reasonable efficiency, however, they incur a

computational and communication overhead linear in the size of the database. On the one hand, lin-

ear complexity is a strict lower bound for computation: in order to guarantee perfect query privacy,

the database needs to “touch” every single record. On the other hand, linear communication over-

head is impractical in the context of very large databases. In [50], our preliminary results suggest

this overhead can be lowered by using a (semi-trusted) third party or a piece of trusted hardware.

Private Testing of Genomic Information. Recent advances in DNA sequencing technologies have

put ubiquitous availability of fully-sequenced human genomes within reach. Common genomic ap-

plications and tests performed in vitro today will soon be conducted computationally, using digitized

genomes. New applications will be developed as genome-enabled medicine becomes increasingly

preventive and personalized, however, prompting significant privacy challenges associated with the

possible loss, theft, or misuse of genomic data. As a result, one interesting research direction is to

design appropriate cryptographic tools for genomic privacy protection. Our preliminary results [7]

show how to enable privacy in genomic applications, e.g., paternity tests, genetic and personalized

medicine testing.
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Appendix A

Performance Evaluation of Private Set

Intersection Protocols

This appendix presents the experimental analysis of state-of-the-art Private Set Intersec-

tion protocols. We consider several variants, reviewed below:

• Private Set Intersection (PSI) involves a server and a client, on input S = {s1, . . . , sw} and

C = {c1, . . . , cv}, respectively. It results in the client outputting S ∩ C.

• Authorized Private Set Intersection (APSI) involves a server and a client, on input

S = {s1, . . . , sw} and C = {(c1, σ1), . . . , (cv, σv)}, respectively. It results in the client

outputting {sj ∈ S | ∃ (ci, σi) ∈ C s.t. ci = sj ∧ Vrfypk(σi, ci) = 1}, where pk is the public

key of a trusted (offline) authorization authority (denoted as CA), given a digital signature

scheme DSIG = (KGen,Sign,Vrfy).

• PSI with Data Transfer (PSI-DT) involves a server, on input a set of items, each with asso-

ciated data, S = {(s1, data1), · · · , (sw, dataw)}, and a client, on input C = {c1, · · · , cv}. It

results in the client outputting {(sj , dataj) ∈ S | ∃ci ∈ C s.t. ci = sj}.

• Authorized PSI-DT (APSI-DT) involves a server, on input S = {(s1, data1), · · · , (sw, dataw)},
and a client, on input of a set of items with associated authorizations, C = {(c1, σi) · · · , (cv, σv)}.
It results in client outputting {(sj , dataj) ∈ S | ∃(ci, σi) ∈ C s.t. ci = sj ∧ Vrfypk(σi, ci) =

1}, where pk is the public key of a trusted (offline) authorization authority (denoted as CA),

given a digital signature scheme DSIG = (KGen, Sign,Vrfy).
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Recall from Section 8.2.3 that PSI techniques can also be distinguished based on whether

or not they support pre-distribution of server inputs. Specifically, we denote as (A)PSI-DT with

pre-distribution those protocol constructions where the server can “pre-process” its input set, inde-

pendently from client input to the protocol. This way, the server can pre-distribute its (processed) set

items before protocol execution. Since both pre-processing and pre-distribution can be done offline,

once for all possible clients, server’s online complexity does not depend on server input size.

Implemented Protocols

We implement state-of-the-art PSI protocols listed in Table A.1. We distinguish between

PSI-DT and APSI-DT variant, as well as between constructions with or without pre-distribution. We

choose to implement protocols with the data transfer functionality, since they are more appealing

for realistic application scenarios.

w/o Pre-Distribution w/ Pre-Distribution

PSI-DT
FNP04: [66], JL09: [98], JL10: [100],

DT10-1: Figure 5.3 DT10-2: Figure 5.4

APSI-DT DT10-APSI: Figure 5.2 -

Table A.1: Implemented PSI-DT and APSI-DT protocols.

Implementation Criteria

We develop our testing software in C++ using OpenSSL (ver. 1.0), GMP (ver. 5.01) and

PBC (ver. 0.57) libraries. All measurements are performed on a Ubuntu 9.10 desktop platform with

Intel Xeon E5420 CPU (2.5GHz and 6MB cache) and 8GB RAM.

In protocols supporting data transfer, the data associated with each server item can be

arbitrarily long. The performance of some protocols is dominated by the size of this data, rather

than sets size (e.g., in FNP04). In order to obtain a fair comparison, however, it is crucial to capture

the “intrinsic” cost of each protocol, stemming from the underlying cryptographic tools. To this

end, we employ the following strategy: we encrypt data associated to each set item with a distinct

random symmetric key and consider these keys as the new associated data. Assuming that a different

key is selected at each interaction, this technique does not violate server unlinkability. This way,

the computation cost of each protocol is measured based on the same fixed-length key, regardless

of data size. In our experiments, we set symmetric key size to 128 bits.
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In all experiments, we use 1024-bit RSA moduli and 1024-bit cyclic-group moduli with a

160-bit subgroup order. Our goal is to compare performance of different PSI protocols, thus, we do

not vary keys/moduli size as protocols exhibit the same trend. All test results are averaged over 100

independent runs. All protocols are instantiated under the assumption of semi-honest adversaries

and in the Random Oracle Model (ROM).

Measurements

As discussed above, each protocol execution involves additional overhead of symmetric

en-/de-cryption of records. Figure A.1 compares the resulting overhead (for variable data sizes),

using either RC4 or AES-CBC (with 128-bit keys).

We assume that the client does not perform any pre-computation, while the server per-

forms as much pre-computation on its input as possible. This reflects the reality where client input

is (usually) determined in real time, while server input is pre-determined. Figure A.2 shows the

pre-computation overhead for each protocol.

Next, we evaluate online computation overhead. Figures A.3 and A.4 show client online

computation overhead with respect to client and server input sizes, respectively. Whereas, figures

A.5 and A.6 show server online computation overhead with respect to client and server input size.

Then, Figures A.7 and A.8 evaluate protocol bandwidth complexity with respect to client

and server input sizes. For protocols with pre-distribution, bandwidth consumption (since the trans-

fer of database encryption is performed offline) does not include pre-distribution overhead. In these

figures, we sometimes use the same marker for different protocols to indicate that these protocols

share the same value. Client input size v (resp., server input size w) is fixed at 5,000 in figures

where x-axis refers to the server (resp., the client) input size.

Performance Comparison

PSI-DT without pre-distribution. We now compare FNP04 and DT10-1 protocols. From Figures

A.3-A.8, we conclude that that FNP04 is much more expensive than DT10-1 in terms of client and

server online computation as well as bandwidth consumption. For each client set size, DT10-1

client overhead ranges from 460ms to 4,400ms, while FNP04 server overhead – between 1,300ms

and 15,000ms. For each chosen server set size, server overhead in DT10-1 is under 1,300ms, while

in FNP04 it exceeds 15,000ms.
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PSI-DT with pre-distribution. Next, we compare JL09, JL10, and DT10-2. Recall that all pro-

tocols, for the sake of our experiments, are instantiated in semi-honest model, thus, ZKPK-s are

not included for JL09 and JL10. Figures A.3-A.8 demonstrate that DT10-2 incurs client overhead

almost two orders of magnitude lower than JL09 and JL10. In fact, DT10-2 involves two client mul-

tiplications for each item, while JL09 performs two heavy homomorphic operations and JL10 – two

exponentiations. In JL10, the server online computation overhead results from v 160-bit exponenti-

ations, whereas, in DT10-2, it results from v RSA exponentiations. Since these exponentiations can

be speeded up using the Chinese Remainder Theorem, the gap (for server computation overhead)

between JL10 and DT10-2 is only double. Summing up server and client computation overhead,

DT10-2 results to be the most efficient. In terms of bandwidth consumption, DT10-2 and JL10 are

almost the same, while JL09 is slightly more expensive.

APSI-DT without pre-distribution. The only protocol available in this context is DT10-APSI.

Figure A.3-A.6 illustrates that client overhead is determined only by client set size, whereas, server

overhead is determined by both client and server set sizes. Measurements obtained for APSI-DT

naturally mirror those of DT10-1, as the former simply adds authorization of client inputs (by merg-

ing signatures into the protocol).
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Figure A.2: Server pre-computation overhead.
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Figure A.3: Client online computation w.r.t.

client set size.
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Figure A.4: Client online computation w.r.t.

server set size.
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Figure A.5: Server online computation w.r.t.

client set size.
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Figure A.6: Server online computation w.r.t.

server set size.
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Figure A.7: Bandwidth consumption w.r.t.

client set size.

 0

 2

 4

 6

 8

 10

 12

 14

 0  2000  4000  6000  8000  10000

B
a

n
d

w
id

th
 C

o
n

s
u

m
p

ti
o

n
 (

M
B

)

Server Set Size (w)

FNP04
DT10-1
DT10-2

JL10
JL09

DT10-APSI
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