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PRIVACY CHALLENGES IN MACHINE LEARNING

A Critical Overview of Privacy in 
Machine Learning

Emiliano De Cristofaro | UCL and Alan Turing Institute

 This article reviews privacy challenges in machine learning and provides an overview of the relevant 
research literature. The possible adversarial models are discussed, a wide range of attacks related to 
sensitive information leakage is covered, and several open problems are highlighted. <AU: Please note 
that the abstract has been trimmed in accordance to magazine style. Please check that included details are 
correct/OK as given.>

P roviders like Google, Microsoft, and Amazon pro-
vide customers with access to software interfaces 

to easily embed machine learning (ML) tasks into their 
applications. Overall, organizations can use ML-as-
a-service (MLaaS) engines to outsource complex tasks, 
e.g., training classifiers, performing predictions, and so 
on. They can also let others query models trained on 
their data. Naturally, this approach can also be used 
and is often advocated in other contexts, including gov-
ernment collaborations, citizen science projects, and 
business-to-business partnerships. Unfortunately, if 
malicious users were to recover the data used to train 
these models, the resulting information leakage would 
create serious issues. Likewise, if the model’s parameters 
are secret or considered proprietary information, then 
access to the model should not allow an adversary to 
learn such parameters. In this article, the privacy chal-
lenges in this space are examined, which provides a sys-
tematic review of the relevant research literature.

Discussed are the possible adversarial models and 
settings, which cover a wide range of attacks related to 
private and/or sensitive information leakage, and the 
recent results, which attempt to defend against such 

attacks, are briefly investigated. Finally, a list of open 
problems that require more work is presented, includ-
ing the need for better evaluations, targeted defenses, 
and the study of the relationship to policy and data pro-
tection efforts.

 This article does not offer a comprehensive survey 
of the literature in the field nor an exhaustive list of all 
the threat models and attacks to privacy in ML; inter-
ested readers may refer to the existing surveys in the 
work of Liu et al.1

ML Background

ML Approaches
 ML models can be categorized according to the prob-
ability distributions that they learn. In supervised learn-
ing, assuming one has some input data x (e.g., pictures 
of animals) and wants to classify them into labels y (e.g., 
types of animal), then, roughly speaking, one can use 
either

■ discriminative models to learn the conditional prob-
ability distribution p(x|y) and ultimately learn to dis-
tinguish from among different classes (e.g., cats versus 
dogs)

■ generative models to learn the joint probability dis-
tribution p(x, y). Among these, generative adversarial 
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networks (GANs) have become very popular as a way 
to generate new data with the same (statistical) prop-
erties as the training set. The two kinds of models are 
displayed in Figure 1.

Another distinction is based on whether the learning 
task is centralized or (somewhat) distributed:

 ■ Centralized learning: In conventional ML methodolo-
gies, all of the training data are pooled and stored at a 
single entity, and the models are trained on this joint 
pool.

 ■ Collaborative/federated learning: Multiple partici-
pants, each with their own training data set, construct 
a joint model by training a local model on their own 
data but periodically exchange model parameters, 
updates to these parameters, or partially constructed 
models with the other participants. This intuition is 
illustrated in Figure 2. There are several techniques in 
this category, including federated learning deployed 
by Google and Apple on millions of devices, e.g., to 
train predictive keyboards on the character sequences 
users type on their phones.

MLaaS 
Many cloud providers, including Microsoft, Amazon, 
and IBM, have launched MLaaS offerings, which are 
aimed at helping clients benefit from ML without the 
cost, time, and risk of building in-house infrastructure 
from scratch. MLaaS offers ready-made, generic ML 
tools, such as predictive analytics, application program-
ming interfaces (APIs), data visualization, and natural 
language processing, which can be adapted by small- 
and medium-sized companies according to their needs. 

The users who purchase MLaaS services can access 
these tools via predictive <AU: Please confirm the 
change from “prediction” to “predictive.”> APIs on 
a pay-per-query basis. A typical image-classification 
service costs approximately US$1–US$10 per 1,000 
queries, depending on the customization and sophisti-
cation of the ML model.

MLaaS services vary considerably across different 
providers. In some cases, providers enable clients to 
download and deploy ML models locally, while others 
allow clients to access ML models only via a prediction 
query interface, which provides both the predicted label 
and the confidence score. The latter is much more pop-
ular. Some platforms also allow clients to upload their 
own models and charge others for using them.

Figure 2. An overview of the federated learning approach.
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Figure 1. An example of a discriminative and a generative 
model. The former learns to distinguish from between two 
classes, i.e., pictures of cats or dogs. The latter estimates 
the underlying distribution of a data set (pictures of cats) 
and randomly generates realistic, yet synthetic, samples 
according to their estimated distribution. <AU: From 
where were these images obtained, and do you have 
permission from the source to use them? Also, please 
confirm the changes to the figure text.>
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Privacy in ML
The security of any system is measured with respect to 
the adversarial goals and capabilities that it is designed 
to defend against; to this end, different threat models 
are now discussed. Then, an attempt to provide a defini-
tion of privacy in ML is provided, which focuses on the 
different types of attacks that are reviewed in detail in 
the “Attacks” section.

Adversarial Models
Overall, attention is focused on the privacy of the model. 
(note that adversarial examples and overall robustness 
issues are outside the scope of this article.) In this section, 
the adversarial goals related to the extraction of informa-
tion about the model or the training data are discussed.

When the model itself represents intellectual prop-
erty, e.g., in financial market systems, the model and its 
parameters should be kept private. In other contexts, it 
is imperative that the privacy of the training data be pre-
served, e.g., in medical applications. Regardless of the 
goal, the attacks and defenses relate to exposing or pre-
venting the exposure of the model and the training data.

The kind of access the attacker might have can be either

 ■ white box, where the adversary has some information 
about the model or its original training data, e.g., the 
ML algorithm, model parameters, or network struc-
ture; or the summary, partial, or full training data.

 ■ black box, where the adversary has no knowledge 
about the model. Rather, he/she might explore a 
model by providing a series of carefully crafted inputs 
and by observing the outputs.

Another variable to consider is where the attack 
might take place:

 ■ Training phase: In this phase, the adversary attempts 
to learn the model, e.g., accessing the summary, par-
tial, or full training data. He/she might create a sub-
stitute model (also known as an auxiliary model) to 
mount attacks on the victim’s system.

 ■ Inference phase: In this phase, the adversary collects 
evidence about the model’s characteristics by observ-
ing the inferences made by it.

Finally, one can distinguish passive from active 
attacks, roughly mirroring the traditional distinction in 
the security literature between honest-but-curious and 
fully malicious adversaries. Consider, for instance, fed-
erated learning, where the attacker is one of the partici-
pants in the collaborative setting.

 ■ Passive attack: In this type of attack, the adver-
sary passively observes the updates and performs 

inference, e.g., without changing anything in the train-
ing procedure.

 ■ Active attack: In this type of attack, the adversary 
actively changes the way he/she operates, e.g., in the 
case of federated learning, by extending their local 
copy of the collaboratively trained model with an aug-
mented property classifier connected to the last layer.

Types of Attacks
Before delving into the state of the art of actual attacks, 
we define what privacy means in the context of ML or, 
alternatively, what it means for an ML model to breach 
privacy. The following inferences about members of the 
population can be made.

 ■ Statistical disclosures: With this inference, the adver-
sary learns something about the input to the model 
from the model’s predictions; in theory, one would 
like to control statistical disclosures (also known as 
the Dalenius desideratum), in that a model should 
reveal no more about the input to which it is applied 
than would have been known about this input with-
out applying the model. However, any useful model 
cannot achieve this.

 ■ Model inversion: An adversary can use the model’s 
output to infer the values of sensitive attributes used 
as input to the model. Note that it may not be pos-
sible to prevent this if the model is based on statistical 
facts about the population. For example, suppose that 
training the model has uncovered a high correlation 
between a person’s externally observable phenotype 
features and their genetic predisposition to a certain 
disease; this correlation is now a publicly known fact 
that allows anyone to infer information about the per-
son’s genome after observing that person.

 ■ Inferring class representatives: Overall, model inversion 
can be generalized to potential breaches where the 
adversary, given some access to the model, infers fea-
tures that characterize each class, making it possible to 
construct representatives of these classes.

When inferring about the members of the training 
data set, the focus is on the privacy of the individuals 
whose data was used to train the model. <AU: Please 
check whether the preceding edited sentence con-
veys the intended meaning.> Of course, members of 
the training data set are members of the population too; 
therefore, one should focus on what the model reveals 
about them beyond what it reveals about an arbitrary 
member of the population:

 ■ Membership inference: Given a model and an exact 
data point, the adversary infers whether this point was 
used to train the model or not.



IEE
E P

ro
of

www.computer.org/security 5

 ■ Property inference: Training data may not be identi-
cally distributed across different users whose records 
are in the training set; unlike model inversion, the 
adversary tries to infer properties that are true of a 
subset of the training inputs but not of the class as 
a whole. For instance, when Bob’s photos are used 
to train a gender classifier, he/she infers that Alice 
appears in some photos.

Inferring model parameters. As discussed previously, 
MLaaS allows model owners to charge others for 
queries to their commercially valuable models. This 
pay-per-query deployment option exemplifies an 
increasingly common tension: On the one hand, the 
query interface of an ML model may be widely acces-
sible, yet the model itself and the data on which it was 
trained may be proprietary and confidential. Moreover, 
for security applications such as spam or fraud detec-
tion, an ML model’s secrecy is critical to its utility; an 
adversary that can learn the model can also often evade 
detection.

In this space, we can distinguish between

 ■ Model extraction: A black-box adversary that can 
query an ML model to obtain predictions on input 
feature vectors and may or may not know the model 
type (e.g., logistic regression) or the distribution over 
the data used to train the model. The adversary’s goal 
is to extract an equivalent or near-equivalent ML 
model.

 ■ Functionality stealing: Rather than stealing the model, 
here the ultimate goal is to create knockoffs of the 
(black-box) model solely based on the input–output 
pairs observed from MLaaS queries.

Attacks

Definition and Relevance
Membership inference relates to the problem of decid-
ing, given a data point, whether or not it was included in 
the training data set. This can constitute a serious pri-
vacy breach in several settings, which we discuss next.

Sensitivity of the task/model. First of all, a membership 
inference attack (MIA) can directly violate privacy if 
inclusion in a training set is itself sensitive based on the 
nature of the task at hand. For example, if health-related 
records (or images like magnetic resonance imaging 
scans) <AU: Kindly check whether MRIs is correctly 
spelled out.> are used to train a classifier, discovering 
that a specific record was used for training inherently 
leaks information about the individual’s health. Simi-
larly, if images from a database of criminals are used to 
train a model predicting the probability that one will 

reoffend, successful membership inference exposes an 
individual’s criminal history.

Signal of leakage. When a record is fully known to the 
adversary, learning that it was used to train a particu-
lar model indicates information leakage through the 
model. Overall, an MIA is often considered a signal—a 
measuring stick of sorts—that access to a model leads 
to potentially serious privacy breaches. In fact, MIAs 
are often gateways to further attacks; for example, if the 
adversary infers that the data of a victim are part of the 
information he/she has access to, he/she can mount 
other attacks, like profiling, property inference, and so 
forth.

Establishing wrongdoing. On the other hand, regula-
tors can also use an MIA to support the suspicion that a 
model was trained on personal data without an adequate 
legal basis or for a purpose not compatible with the data 
collection. For instance, DeepMind was recently found 
to have used personal medical records provided by the 
United Kingdom’s National Health Service for purposes 
beyond direct patient care, the basis on which the data 
was collected.

MIAs beyond ML. As a side note, we remark that MIAs 
have been studied not only in the context of ML but 
also in other fields. Overall, given a data point and a 
function, one can define membership inference as the 
problem of determining whether the point is a part of the 
input to the function. Often, this function is some form of 
aggregation, and in fact, researchers have demonstrated 
the existence of successful MIAs against aggregate sta-
tistics in the context of genomic studies, location data, 
and so on.

State of the Art

Attacking MLaaS. MIAs against black-box ML mod-
els were first studied by Shokri et al.2 in the context of 
supervised learning. They focus on the classification 
models trained by commercial MLaaS providers, such 
as Google and Amazon, whereby a user has API access 
to a trained model.

More specifically, the customers in possession of a 
data set and a data-classification task can upload the 
data set to the MLaaS service and pay it to construct 
a model. The service then makes the model available 
to the customer, typically as a black-box API. For 
example, a mobile app maker can use such a service 
to analyze users’ activities and query the resulting 
model inside the app to promote in-app purchases 
to users when they are most likely to respond. More-
over, some ML services also let data owners expose 
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their models to external users for querying or even 
sell them.

Inference via overfitting. Shokri et al.’s approach2 
exploits the differences in the model’s response to 
inputs that were or were not seen during training. For 
each class of the targeted black-box model, they train a 
shadow model using the same ML technique; the think-
ing <AU: Please confirm the change from “intuition” 
to “thinking.”> is that the model ends up “overfitting” 
on the data used for training. Overfitting is a modeling 
error that occurs when a function is too closely fit to a 
limited set of data points and performs better on the 
training inputs than on the inputs drawn from the same 
population but not used during the training. Therefore, 
the attacker can exploit the confidence values on the 
inputs belonging to the same classes and learn to infer 
membership.

Generative models. Although the aforementioned 
research focuses on discriminative models, other work 
targets generative models. As discussed previously, the 
models are used to generate new samples from the same 
underlying distribution of a given training data set, e.g., 
to artificially generate plausible images and videos. Here 
the attacker targets an MLaaS engine that provides syn-
thetic samples on demand; for example, the user’s query 
is “provide an image sample of a cat,” based on a trained 
generative model. Once again, inferring whether specific 
data points are part of the training set for that generative 
model may constitute a serious privacy breach. Note that 
membership inference on generative models is much 
more challenging than on discriminative ones: In the 
former, the attacker cannot exploit confidence values on 
the inputs belonging to the same classes. It is therefore 
more difficult to detect overfitting and mount the attack.

Hayes et al.4 consider both black- and white-box 
attacks. In the former, the adversary can make queries 
to only the model under attack, i.e., the target model, 

and has no access to the internal parameters. In the lat-
ter, he/she also has access to the parameters. To mount 
the attacks, he/she trains a GAN on the samples gener-
ated from the target model, i.e., using generative models 
to learn information about the target generative model, 
thus creating a local copy of the target model from which 
they can launch the attack. The thinking is that, if a gen-
erative model overfits, then a GAN, which combines a 
discriminative and a generative model, should detect 
this overfitting because the discriminator is trained to 
learn the statistical differences in distributions. More-
over, for white-box attacks, the attacker-trained dis-
criminator itself can be used to measure the information 
leakage of the target model.

Federated learning. In this setting, the attack can be 
mounted by an adversary, a participant in the federated 
learning, attempting to infer whether a particular record 
is part of the training set of either a specific or any par-
ticipant. The first MIA against federated learning is 
presented by Melis et al.,3 whose main intuition is to 
exploit unintended leakage from either the embedding 
layer (all of the deep learning models that operate on 
nonnumeric data where the input space is discrete and 
sparse first use an embedding layer to transform inputs 
into a lower-dimensional vector representation) or the 
gradients (in deep learning models, gradients are com-
puted by backpropagating the loss through the entire 
network from the last to the first layer). An illustration 
of Melis et al.’s attack3 is presented in Figure 3. Then, 
Nasr et al.5 design MIAs during the training phase in a 
white-box setting, including passive and active attackers 
based on the different adversary’s prior knowledge.

Model Inversion
As mentioned previously, model-inversion techniques 
aim to infer class features and/or construct class rep-
resentatives. This assumes that the adversary has some 
access (either black or white box) to a model.

Figure 3. The inference attacks against federated learning (passive adversary).3 
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Definition and early work. The concept of model inver-
sion is introduced by Fredrikson et al.6 First, they show 
how an attacker can rely on the outputs from a classifier 
to infer sensitive features used as inputs to the model 
itself: Given the model and some demographic infor-
mation about a patient whose records are used for train-
ing, an attacker might predict sensitive attributes of the 
patient. Then they use “hill climbing” on the output 
probabilities of a computer-vision classifier to reveal 
individual faces in the training data.

These techniques are sometimes described as vio-
lating the privacy of the training data, even though the 
inferred features characterize an entire class and not 
specifically the training data, except in the cases of path-
ological overfitting where the training sample consti-
tutes the entire membership of the class.

Further Attacks

Collaborative learning. Hitaj et al.7 show that a partici-
pant in collaborative learning can use GANs to con-
struct class representatives; however, this technique has 
been evaluated on only the models where all members 
of the same class are visually similar (handwritten digits 
and faces). Thus, there is no evidence that it produces 
actual training images or can distinguish a training 
image from another image in the same class.

Aono et al.8 show that in collaborative deep learning, 
an adversarial server can partially recover participants’ 
data points from the shared gradient updates, although 
in a greatly simplified setting where the batch consists of 
a single data point.

Unintended memorization. Song et al.9 engineer an 
ML model that memorizes the training data, which 
can then be extracted using black-box access to the 
model, without affecting the accuracy of the model on 
its primary task. Then, Carlini et al.10 show that deep 
learning-based generative sequence models trained on 
text data can unintentionally memorize specific train-
ing inputs, which can then be extracted using black-box 
access. Even though the models are trained on text, 
extraction is demonstrated for only sequences of dig-
its (artificially introduced into the text), which are not 
affected by the relative word frequencies in the language 
model.

Property Inference
As mentioned in previous sections, there has been 
work6,7,11 that aims to infer the properties that 
characterize an entire class: For example, given a 
facial-recognition model where one of the classes is 
Bob, infer what Bob looks like (e.g., Bob wears glasses). 
However, although Ateniese et al.11 were actually the 

first (to the author’s best knowledge) to reason about 
extracting “something meaningful relating to proper-
ties of the training set,” it is not clear that hiding this 
kind of information in a good classifier is possible or 
desirable.

Attacks. By contrast, here we focus on the adversarial 
goal of inferring properties that are true of a subset of 
the training inputs but not of the class as a whole. For 
instance, when Bob’s photos are used to train a gender 
classifier, can the attacker infer that Alice appears in 
some of the photos? In particular, Melis et al.3 focus on 
the properties that are independent of the class’s char-
acteristic features. In contrast to the facial-recognition 
example, where “Bob wears glasses” is a characteristic 
feature of an entire class, in their gender classifier study, 
they infer whether people in Bob’s photos wear glasses, 
even though wearing glasses does not correlate with 
gender. There is no “legitimate” reason for a model to 
leak this information; it is purely an artifact of the learn-
ing process.

The work of Melis et al.3 studies this kind of prop-
erty inference in the context of collaborative/federated 
learning. More specifically, their intuition is that a par-
ticipant’s contribution to each iteration of collabora-
tive learning is based on a batch of their training data, 
and the adversary can infer single-batch properties, i.e., 
detect that the data in a given batch has the property but 
that other batches do not. He/she can also infer when a 
property appears in the training data, which has dire pri-
vacy implications. For instance, the adversary can infer 
when a certain person starts appearing in a participant’s 
photos or when the participant starts visiting a certain 
type of doctor. Finally, they infer the properties that 
characterize a participant’s entire data set (but not the 
entire class), e.g., authorship of the texts used to train a 
sentiment-analysis model.

Model and Functionality Stealing

Model extraction. Finally, we look into adversarial 
efforts toward inferring model parameters. The con-
cept of model stealing, or extraction, is first presented 
by Tramèr et al.12 In this kind of attack, an adversary 
with black-box access, but no prior knowledge of an 
ML model’s parameters or training data, aims to steal 
the model parameters. The inspiration for the attack is 
to exploit the information-rich outputs returned by the 
ML prediction APIs, e.g., high-precision confidence val-
ues in addition to the class labels. <AU: Please check 
whether the preceding edited sentence conveys the 
intended meaning.>

Consider the case of ML algorithms like logistic 
regression: The confidence value is a simple log-linear 
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function 1/(1+e−(w·x+β)) of the d-dimensional input 
vector x. By querying d + 1 random d-dimensional 
inputs, an attacker can, with high probability, solve for 
the unknown d + 1 parameters w and β defining the 
model. (Such equation-solving attacks extend to multi-
class logistic regressions and neural networks.)

Overall, Tramèr et al.’s work12 is focused on inferring 
model parameters, but follow-up work also focuses on 
stealing hyperparameters, architectures, and so forth. In 
the former, the focus is on hyperparameters rather than 
parameters, which are configurations external to the 
model and whose values cannot be estimated from data. 
In the latter, a black-box adversary succeeds to infer 
(hidden) model architectures (e.g., the type of nonlin-
ear activation) of neural networks in MLaaS as well as 
their optimization processes (e.g., stochastic gradient 
descent or ADAM). <AU: Kindly spell out ADAM.>

Functionality extraction. As mentioned in the “Types 
of Attacks” section, the goal of functionality extraction 
is, rather than to steal the model, to create knockoffs. 
Orekondy et al.3 do so based solely on the input–out-
put pairs observed from MLaaS queries. The adversary 
interacts with a black-box “victim” convolutional neural 
network by providing it input images and obtaining the 
respective predictions. The resulting image-prediction 
pairs are used to train a knock-off model, e.g., to com-
pete with the victim model at the victim’s task.

Defenses
Overall, the aforementioned defenses against attacks 
include advanced privacy-enhancing technologies like 
cryptography and differential privacy (DP). They also 
comprise the approaches used as part of the learning 
process (mainly training) to reduce the information 
available to the adversary.

Cryptography. Cryptography in ML can support confi-
dential computing scenarios where, for instance, a server 
has a model trained on its private data and wishes to pro-
vide inferences (e.g., classification) on clients’ private 
data. In this context, there are many research proposals 
and prototypes in the literature that allow the client to 
obtain the inference result without revealing their input 
to the server while preserving the confidentiality of the 
server’s model. For instance, privacy-enhancing tools 
based on secure multiparty computations and fully 
homomorphic encryption could be used to train ML 
models securely.

Overall, cryptography in ML is aimed at protect-
ing confidentiality, rather than privacy, which consti-
tutes the main focus of this article. Confidentiality is 
an explicit design property whereby one party wants to 
keep information (e.g., training and testing data, model 

parameters, and so on) hidden from both the public 
and other parties (e.g., clients with respect to servers or 
vice versa). Whereas privacy is about protecting against 
unintended information leakage whereby an adver-
sary aims to infer sensitive information through some 
(intended) interaction with the victim. In other words, 
cryptographically enforced confidential computing 
does not provide any guarantees about what the output 
of the computation reveals.

DP. The state-of-the-art method for providing access 
to information in a private way is to satisfy DP. DP 
addresses the paradox of learning nothing about an 
individual while learning useful information about a 
population; generally speaking, it provides rigorous, 
statistical guarantees against what an adversary can infer 
from learning the result of some randomized algorithm. 
Typically, differentially private techniques protect the 
privacy of individual data subjects by adding random 
noise when producing statistics. DP guarantees that 
an individual will be exposed to the same privacy risk 
whether or not his/her data are included in a differen-
tially private analysis.

This applies to ML as well and more precisely to pro-
viding access to models that have been trained on (sen-
sitive) data sets. However, there is no one-size-fits-all 
solution and, as discussed later, the privacy-utility trad-
eoffs are not particularly promising across the board. In 
other words, as DP in ML relies on adding noise, it does 
affect the utility of the learning tasks. Unfortunately, the 
settings that provide limited accuracy loss often provide 
little privacy, and vice versa the settings that provide 
strong privacy result in useless models.

Trusted execution environments. A different line of work 
focuses on privacy (as well as integrity) guarantees for 
ML computations in untrusted environments (i.e., the 
tasks outsourced by a client to a remote server, includ-
ing MLaaS) by leveraging so-called trusted execution 
environments (TEEs), such as Intel SGX or Arm Trust-
Zone. TEEs use hardware and software protections to 
isolate sensitive code from other applications while 
attesting to its correct execution. The main idea is that 
TEEs outperform purely cryptographic approaches 
by multiple orders of magnitude. However, these 
approaches are increasingly targeted by side-channel 
attacks where information can still leak out of the TEEs, 
ultimately compromising the systems’ security.

ML-specific approaches. Finally, several ML techniques 
are used to reduce the information available to the 
adversary to mount their attacks. For instance, dropout 
is a regularization method for neural networks and is 
often used to mitigate overfitting in neural networks; as 
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such, this might reduce the effectiveness of MIAs based 
on overfitting. The additional techniques in this space 
include weight normalization (a reparameterization of 
the weight vectors that decouple the length of those 
weights from their direction), dimensionality reduction 
(e.g., using only the inputs that occur many times in the 
training data), selective gradient sharing (in collabora-
tive learning, participants could share only a fraction of 
their gradients during each update), and so forth. <AU: 
Please check whether the preceding edited sentence 
conveys the intended meaning.> However, in many 
settings, these approaches provide very few/not partic-
ularly robust privacy defenses.3

Discussion
A review on privacy and ML was provided, present-
ing a wide range of attacks that relate to private and/
or sensitive information leakage. Next is a discussion of 
the main takeaways and a list of the areas where further 
work is needed.

What Do the Attacks Mean?

MIAs are real. As is evident from the previous discuss-
ion, there has been a very significant amount of research 
work on MIAs against ML. Arguably, this is motivated 
by 1) the seriousness of the privacy risks stemming 
from such attacks, 2) the fact that an MIA is often just a 
signal of leakage and can serve as a “canary” for broader 
privacy issues, and 3) the interesting challenges associ-
ated with making the attacks more effective, less reliant 
on strong assumptions, and so on. <AU: Please check 
whether the preceding edited sentence conveys the 
intended meaning.> 

Several attacks have been proposed in the context of 
a wide variety of data sets (images, text, and so forth) 
and models (discriminative, generative, and federated) 
as well as threat models (API access, white or black box, 
active, passive, and so on). Such attacks are realistic, but 
obviously their effectiveness depends on the actual set-
tings, e.g., an adversary’s knowledge of records, model 
parameters, and so forth and are likely to affect certain 
users more than others.

Overall, MIAs are a real problem that, at the very 
least, should make practitioners and researchers ques-
tion whether deploying ML models in the wild is a 
good idea privacywise whenever training data are sensi-
tive. However, further work is needed to provide clear 
guidelines and usable tools for the practitioners will-
ing to provide access to trained models to fully under-
stand the privacy risks, on their specific data/specific 
learning tasks, and for the users whose data are used for 
training. In other words, MIAs are very much possible, 
but it is hard to grasp the real-world effect on actually 

deployed models due to the lack of case studies vis-à-vis 
their impact on actual users, relationship to an adver-
sary’s prior knowledge, and so on. <AU: Please check 
whether the two preceding edited sentences con-
vey their intended meanings.> Much work is left to 
be done here, especially considering the ways in which 
guidelines and evaluation frameworks are provided for 
practitioners.

Limitations of model inversion. Although the research 
that roughly falls into the model-inversion category 
is important, there are some limitations to what they 
mean for privacy. The class members produced by 
model inversion and GANs are similar to the train-
ing inputs only if all the class members are similar, as 
is the case for the Modified National Institute of Stan-
dards and Technology (the data set of handwritten 
digits7) and facial recognition. This does not violate 
the privacy of the training data, it simply shows that 
ML works as it should. A trained classifier reveals the 
input features characteristic of each class, thus enabling 
the adversary to sample from the class population. For 
instance, Figure 4 shows GAN-constructed images for 
the gender-classification task on the “Labeled Faces in 
the Wild” data set taken from the work of Melis et al.3 
These images show a generic female face, but there is 

Figure 4. The samples from a GAN attack on a 
gender-classification model where the class is “female.” 
<AU: From where was this image obtained, and do you 
have permission from the source to use it?>
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no way to tell from them whether an image of a specific 
female was used in training or not.

Therefore, the informal property violated by such 
attacks is, roughly speaking “a classifier should prevent 
users from generating an input that belongs to a particu-
lar class or even learning what such an input looks like.” 
However, it is not clear why this property is desirable or 
whether it is even achievable. In fact, this motivated the 
study of what are defined as property inference attacks.

There are, however, cases where model inversion 
is also due to model overfitting on the training data as 
correlations between multiple attacks occur.14 To some 
extent, this calls for further work to study the scenarios 
where the attacker might indeed benefit from having 
access to the target model.

Property inference needs further work. Overall, prop-
erty inference attacks are not to be ignored, even 
though their effectiveness depends on the context. As 
mentioned previously, inferring sensitive attributes is 
actually a privacy breach when the attacker can confi-
dently assess that those attributes are related to records 
in the training set. Even more so if they do not leak sim-
ply because the class the model is learning to classify is 
strictly correlated.

So actually, the only “attack” in this sense that we 
are aware of is that of Melis et al.,3 which has been stud-
ied only in the context of collaborative learning. Even 
in that case, the authors essentially show that the accu-
racy of the attack quickly degrades with an increasing 
number of participants. In fact, if this number is large 
enough, then differentially private defenses based on 
the moments accountant method15 could be used to 
thwart such attacks.

It remains, however, an open research question to 
investigate whether property inference attacks 1) are 
possible, as per our definition, in noncollaborative 
learning settings and at scale and 2) can be thwarted 
in collaborative settings involving a small number of 
participants.

Policy Implications and Further  
Study Needed
The implication of the attacks covered in this article 
vis-à-vis policy and data protection is also largely unex-
plored. The only exception in this context is the work by 
Cohen and Nissim,16 which rephrases privacy attacks 
in the General Data Protection Regulation (GDPR) 
framework and, more specifically, within its singling-out 
concept. Although the GDPR focuses heavily on the 
concept of identification, what it means for a person 
to be “identified, directly or indirectly” is not clear. As 
pointed out by Cohen and Nissim,16 Recital 26 sheds a 
little more light:

To determine whether a natural person is identifiable, 
account should be taken of all the means reasonably likely 
to be used, such as singling out, either by the controller or 
by another person to identify the natural person directly 
or indirectly.

Therefore, singling out is one way to identify a per-
son in data, and only the data that do not allow singling 
out may be excepted from the regulation. Clearly, more 
work that links up privacy attacks (and defenses) with 
regulation and data protection efforts needs to ramp up.

O verall, several defense techniques against pri-
vacy attacks have been proposed over the past 

few years; however, it is very hard to assess how gener-
alizable they are and the tradeoff they incur regarding 
privacy and utility. This prompts the need for a more 
thorough evaluation of how defenses fare in practice, 
vis-à-vis realistic use cases and data sets, rather than the 
standard public ones that, more often than not, say little 
or nothing about real-world performance.

In this context, some recent work has taken steps in 
the right direction; for instance, Jayaraman and Evans17 
study the impact of variable choices of the € parameter, 
different variants of DP, and several learning tasks on both 
utility and privacy (including in the context of MIAs) for 
privacy-preserving ML. Unfortunately, however, their 
main finding is that there is no way to obtain privacy for 
free; relaxed definitions of DP that reduce the amount of 
noise needed to improve utility also increase privacy leak-
age. In other words, the current mechanisms for differ-
entially private ML rarely offer acceptable utility-privacy 
tradeoffs for complex learning tasks: The settings that 
offer limited accuracy loss provide little effective privacy, 
and the settings that afford strong privacy result in use-
less models. Once again, this points to the need to better 
understand where tradeoffs are possible, in what context, 
and at what expense, rather than hoping to deploy generic, 
one-size-fits-all defenses across the board. 
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ML models can be categorized according to 
the probability distributions that they learn.

MLaaS allows model owners to charge 
others for queries to their commercially 

valuable models.

When a record is fully known to the 
adversary, learning that it was used to train 

a particular model indicates information 
leakage through the model.

The goal of functionality extraction is, 
rather than to steal the model, to create 

knockoffs.

Membership inference on generative 
models is much more challenging than 

on discriminative ones. 



IEE
E P

ro
of

www.computer.org/security 13

Although the GDPR focuses heavily on the 
concept of identification, what it means for 

a person to be “identified, directly or 
indirectly” is not clear.

Typically, differentially private techniques 
protect the privacy of individual data 

subjects by adding random noise when 
producing statistics.


