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Reasoning about “privacy” in ML

Most privacy attacks in ML focus on inferring: 
1. Inclusion of a data point in the training set 
   (aka “membership inference”) 
2. What class representatives (in training set) look like 
   (aka “model inversion”) 
3. Properties/Attributes of the training data other than  
   the main task (aka “property inference”)
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1. Membership Inference

Adversary wants to test whether data of a target victim 
has been used to train a model 
Serious problem if inclusion in training set is privacy-sensitive 
E.g., main task is: predict whether a smoker gets cancer 
[Shokri et al., S&P’17] show it for discriminative models 
[Hayes et al. PETS’19] for generative models (later in the talk)

Membership inference is a very active research area, not 
only in machine learning… 
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Membership Inference (cnt’d)

Given f(data), infer if x ∈ data (e.g., f is aggregation) 
[HSR+08, WLW+09] for genomic data 
[Pyrgelis et al., NDSS’18] for mobility data

Membership inference is a very active research area, not 
only in machine learning… 
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Well-understood problem (besides leakage)
Use it to establish wrongdoing 
Or to assess protection, e.g., with differentially private noise



2. Inferring Class Representatives

Prior work focused on properties of an entire class, e.g.: 
 Model Inversion [Fredrikson et al. CCS’15] 
 GAN attacks [Hitaji et al. CCS’17] 

E.g.: given a gender classifier, infer what a male looks like 

But…shouldn’t useful machine learning models reveal something 
about population from which training data was sampled??

Privacy leakage !=  
Adv learns something about training data
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3. Property Inference

How about if we inferred properties of a subset of the 
training inputs… 

    …but not of the whole class? 

In a nutshell: given a gender classifier, infer race of 
people in Bob’s photos
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Synthetic Data
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“ODI Leeds and NHS England will be working together to explore 
the potential of 'synthetic data.' This is data that has been created 
following the patterns identified in a real dataset but it contains no 
personal data, making it suitable to release as open data. 
Synthetic data is also great for building and prototyping ideas” 
https://www.odileeds.org/events/synae/



The Promise of Synthetic Data
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Attacks Against Synthetic Data?
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Machine Learning as a Service

Predictions are leaky! 
Shokri et al. Membership inference attacks 
against machine learning models [S&P’17]

Prediction API Training API

Cloud model
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Membership Inference/Discriminative
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What About Generative Models?
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Discriminative 
Model cat | dog



Membership Inference in Generative Models

Generative API Training API

Generative model

Query

Jamie Hayes, Luca Melis, George Danezis, Emiliano De Cristofaro. LOGAN: Membership 
Inference Attacks Against Generative Models [PETS 2019] 21



Inference without predictions?

Use generative models! 
Train GANs to learn the distribution and a prediction model at the 
same time

sample

sample

Real

FakeDiscriminatorNoise

Training Set

Generator 22



White-Box Attack
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Black-Box Attack

Noise
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Datasets

LFW

CIFAR-10

DR

Models

Attacker Model:  
    DCGAN 
Target Model:  
    DCGAN, DCGAN+VAE, BEGAN 

sample
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Real

FakeDiscriminatorNoise

Training 
Set

Generator
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White-Box Results
 LFW, top ten classes CIFAR-10, random 10% subset
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Black-Box Results
 LFW, top ten classes CIFAR-10, random 10% subset
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DR Dataset
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[Stadler et al., Usenix’21]
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Membership Inference
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Privacy Gain
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• Under the assumption equal prior and perfect linkage in case of raw dataset  


 

𝑃[𝑡𝑠] = 0.5  𝑃[𝑀𝐼𝐴𝑡(𝑅) =  𝑡𝑠] = 1

𝑃 𝐺𝑡(𝑆,  𝑅) ≜
1  −  𝑃[𝑀𝐼𝐴𝑡(𝑆 ) =  𝑡𝑠]

2

𝑃 𝐺𝑡 = 0.5𝑃 𝐺𝑡 = 0
𝑃 𝐺𝑡 = 0.25

Publishing S gives the adversary no advantage over 
random guessing

𝑃[𝑀𝐼𝐴𝑡(𝑆 ) =  𝑡𝑠] = 0.5 

Publishing S is equivalent to 
publishing R

𝑃[𝑀𝐼𝐴𝑡(𝑆 ) =  𝑡𝑠] = 1 

Publishing S reduces the 
adversary’s chance of success

𝑃[𝑀𝐼𝐴𝑡(𝑆 ) =  𝑡𝑠] = 0



Privacy Gain
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Genomic Privacy

Treasure trove of sensitive information 

Ethnic heritage, predisposition to diseases 

Genome = the ultimate identifier 

Hard to anonymize / de-identify 

Sensitivity is perpetual 
Cannot be “revoked” 

Leaking one’s genome ≈ leaking relatives’ genome 
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Enter Synthetic Genomic Data

Recombination model (Recomb)* 
Restricted Boltzmann Machines (RBM)+ 
Generative Adversarial Networks (GAN)+ 
Wasserstein GAN (WGAN)^ 
Recombination RBM (Rec-RBM), new 
Recombination GAN (Rec-GAN), new
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*Samani et al. Quantifying genomic privacy via inference attack with high-order SNV correlations 
+Yelmen et al. Creating Artificial Human Genomes Using Generative Models 
^Killoran, et al. Generating and designing DNA with deep generative models



Datasets

CEU Population (HapMap Project) 
CHB Population (HapMap Project) 
1,000 Genomes Project
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Utility
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Allele Statistics
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Allele Statistics
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1000 Genomes



Population Statistics
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Linkage Disequilibrium
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Membership Inference
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Membership Inference
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1000 Genomes



Membership Inference w Partial Information
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• We only give the attacker access to a fraction of SNVs from the target 

sequence, chosen at random.  

• The attacker then uses the Recombination model as an inference method 

to predict the rest of the sequence. 

• The PG formula needs adjusting:



MIA with Partial Information
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MIA with Partial Information
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Take Aways

• High-quality synthetic data must accurately capture the relations 
between data points; however, this can enable attackers to infer 
sensitive information about the training data used to generate 
the synthetic data 

• The size of the training dataset matters, especially in the case 
of non-statistical generative models 

• Overall, there is no single method that outperforms the others 
for all metrics and all datasets. 
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Conclusion

This slide is intentionally left blank.
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