

Measuring Utility and Privacy of Synthetic Genomic Data

Emiliano De Cristofaro https://emilianodc.com

Agenda

Privacy in Machine Learning

Synthetic Data

Privacy (and Utility) in Synthetic Genomic Data

Agenda

Privacy in Machine Learning

Reasoning about "privacy" in ML

Most privacy attacks in ML focus on inferring:

- 1. Inclusion of a data point in the training set (aka "membership inference")
- 2. What class representatives (in training set) look like (aka "model inversion")
- 3. Properties/Attributes of the training data other than the main task (aka "property inference")

1. Membership Inference

Adversary wants to test whether data of a target victim has been used to train a model

Serious problem if inclusion in training set is privacy-sensitive

E.g., main task is: predict whether a smoker gets cancer

[Shokri et al., S&P'17] show it for discriminative models

[Hayes et al. PETS'19] for generative models (later in the talk)

Membership inference is a very active research area, not only in machine learning...

Membership Inference (cnt'd)

Membership inference is a very active research area, not only in machine learning...

```
Given f(data), infer if x \in data (e.g., f is aggregation) [HSR+08, WLW+09] for genomic data [Pyrgelis et al., NDSS'18] for mobility data
```

Well-understood problem (besides leakage)

Use it to establish wrongdoing

Or to assess protection, e.g., with differentially private noise

2. Inferring Class Representatives

Prior work focused on properties of an entire class, e.g.:

Model Inversion [Fredrikson et al. CCS'15]

GAN attacks [Hitaji et al. CCS'17]

E.g.: given a gender classifier, infer what a male looks like

But...shouldn't useful machine learning models reveal something about population from which training data was sampled??

Privacy leakage !=

Adv learns something about training data

3. Property Inference

How about if we inferred properties of a subset of the training inputs...

...but not of the whole class?

In a nutshell: given a gender classifier, infer race of people in Bob's photos

Agenda

Privacy in Machine Learning

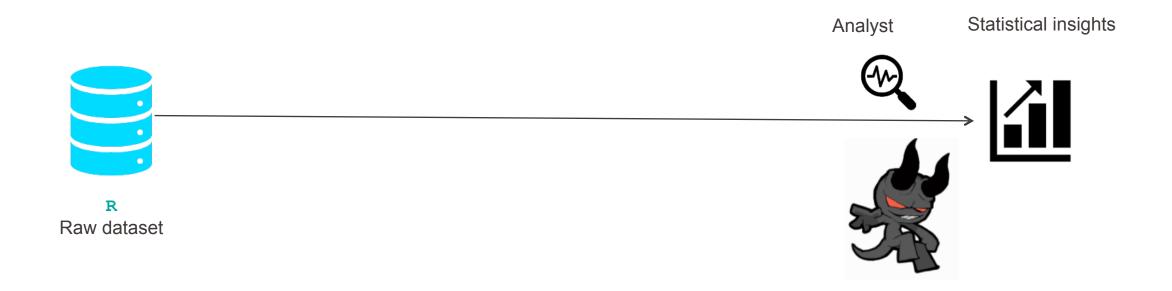
Synthetic Data

Privacy (and Utility) in Synthetic Genomic Data

Agenda

Synthetic Data

Data Sharing



Data Sharing

AOL Proudly Releases Massive Amounts of Private Data

Michael Arrington @arrington?lang=en / 2:17 AM GMT+1 • August 7, 2006

Comment

Yet Another Update: AOL: "This was a screw up"

AOL Proudly Releases Massive Amounts of Private Data

Michael Arrington @arrington?lang=en / 2:17 AM GMT+1 • August 7, 2006

Comment

Yet Another Update: AOL: "This was a screw up"

AOL Proudly Releases Massive Amounts of Private Data

Michael Arrington @arrington?lang=en / 2:17 AM GMT+1 • August 7, 2006

Comment

Yet Another Update: AOL: "This was a screw up"

Study finds HIPAA protected data still at risks

AOL Proudly Releases Massive Amounts of Private Data

Michael Arrington @arrington?lang=en / 2:17 AM GMT+1 • August 7, 2006

Comment

Yet Another Update: AOL: "This was a screw up"

Study finds HIPAA protected data still at risks

Netflix Cancels Contest After Concerns Are Raised About Privacy

By Steve Lohr

AOL Proudly Releases Massive Amounts of Private Data

Michael Arrington @arrington?lang=en / 2:17 AM GMT+1 • August 7, 2006

Yet Another Update: AOL: "This was a screw up"

Study finds HIPAA protected data still at risks

Comment

New York taxi details can be extracted from anonymised data, researchers say

FoI request reveals data on 173m individual trips in US city - but could yield more details, such as drivers' addresses and income

Netflix Cancels Contest After Concerns Are Raised About Privacy

By Steve Lohr

AOL Proudly Releases Massive Amounts of Private Data

Michael Arrington @arrington?lang=en / 2:17 AM GMT+1 • August 7, 2006

Yet Another Update: AOL: "This was a screw up"

Study finds HIPAA protected data still at risks

Comment

New York taxi details can be extracted from anonymised data, researchers say

FoI request reveals data on 173m individual trips in US city - but could yield more details, such as drivers' addresses and income

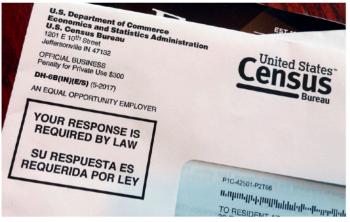
Netflix Cancels Contest After Concerns Are Raised About Privacy

By Steve Lohr

TheUpshot

To Reduce Privacy Risks, the Census Plans to Report Less Accurate Data

Guaranteeing people's confidentiality has become more of a challenge, but some scholars worry that the new system will impede research.



A 2018 census test letter mailed to a resident in Providence, R.I. The nation's test run of the 2020 Census is in Rhode Island. Michelle R. Smith/Associated Press

AOL Proudly Releases N 'Anonymised' data can never be totally of Private Data anonymous, says study

Michael Arrington @arrington?lang=en / 2:17 AM GMT+1 • August 7, 20

Yet Another Update: AOL: "This was a screw up

Study finds HIPAA protected data still at risks

Findings say it is impossible for researchers to fully protect real identities in datasets

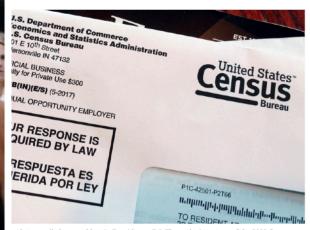
▲ In practice, supposedly anonymised data can be deanonymised in a number of ways to identify real people. Photograph: Stefan Rousseau/PA

totally About Privacy

Upshot

Reduce Privacy Risks, the Census Plans Report Less Accurate Data

anteeing people's confidentiality has become more of a enge, but some scholars worry that the new system will de research.



est letter mailed to a resident in Providence, R.I. The nation's test run of the 2020 Census and. Michelle R. Smith/Associated Press

AOL Proudly Releases N 'Anonymised' data can never be totally of Private Data anonymous, says study

Michael Arrington @arrington?lang=en / 2:17 AM GMT+1 • August 7, 20

Yet Another Update: AOL: "This was a screw up

Study finds HIPAA protected data still at risks

Findings say it is impossible for researchers to fully protect real identities in datasets

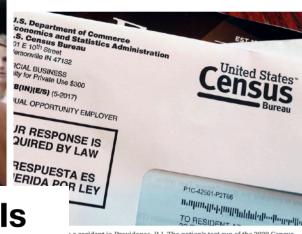
Researchers Find 'Anonymized' Data Is Even Less Anonymous Than We Thought

totally About Privacy

Upshot

Reduce Privacy Risks, the Census Plans Report Less Accurate Data

anteeing people's confidentiality has become more of a enge, but some scholars worry that the new system will de research.



) a resident in Providence, R.I. The nation's test run of the 2020 Census th/Associated Press

Synthetic Data

Synthetic Data

MOSTLY AI PRODUCT V SOLUTIONS USE CASES V BLOG

Democratize your data access with synthetic data!
No more fines.
Guaranteed.

Create highly realistic, privacy-safe synthetic datasets proven to be compliant even with the strictest data protection laws.

Synthetic Data

MOSTLY AI PRODUCT - SOLUTIONS USE CASES - BLOG

Democratize your data access with synthetic data! No more fines. Guaranteed.

Create highly realistic, privacy-safe synthetic datasets proven to be compliant even with the strictest data protection laws.

Privacy-compliance for data exploration

Statice offers a data anonymization solution. We enable businesses to stay innovative with smart synthetic data. Our solution empowers companies to work with complex data in a privacy-compliant manner. Data-driven innovation of tomorrow starts with protecting data today.

MOSTLY AI

PRODUCT V SOLUTIONS USE CASES V BLOG

Democratize your data access with synthetic data! No more fines. Guaranteed.

Create highly realistic, privacy-safe synthetic datasets proven to be compliant even with the strictest data protection laws.

Privacy-compliance for data exploration

Statice offers a data anonymization solution. We enable businesses to stay innovative with smart synthetic data. Our solution empowers companies to work with complex data in a privacy-compliant manner. Data-driven innovation of tomorrow starts with protecting data today.

Enable cross boundary data analytics

Hazy synthetic data generation lets you create business insight across company, legal and compliance boundaries — without moving or exposing

MOSTLY-AL

PRODUCT V SOLUTIONS USE CASES V BLOG

Democratize your data access with synthetic data! No more fines. Guaranteed.

Create highly realistic, privacy-safe synthetic datasets proven to be compliant even with the strictest data protection laws.

Privacy-compliance for data exploration

Statice offers a data anonymization solution. We enable businesses to stay innovative with smart synthetic data. Our solution empowers companies to work with complex data in a privacy-compliant manner. Data-driven innovation of tomorrow starts with protecting data today.

Enable cross boundary data analytics

Hazy synthetic data generation lets you create business insight across company, legal and compliance boundaries — without moving or exposing your data.

Innovate with Synthesized

Synthesized data: 10X the impact, 0 risks

MOSTLY-AL

PRODUCT V SOLUTIONS USE CASES V BLOG

Democratize your data access with synthetic data! No more fines. Guaranteed.

Create highly realistic, privacy-safe synthetic datasets proven to be compliant even with the strictest data protection laws.

Privacy-compliance for data exploration

Statice offers a data anonymization solution. We enable businesses to stay innovative with smart synthetic data. Our solution empowers companies to work with complex data in a privacy-compliant manner. Data-driven innovation of tomorrow starts with protecting data today.

Enable cross boundary data analytics

Hazy synthetic data generation lets you create business insight across company, legal and compliance boundaries — without moving or exposing your data.

Innovate with Synthesized

Synthesized data: 10X the impact, 0 risks

Synthesized solves the problem of data sharing

Instead of sharing original data, we enable businesses and other data owners to work with compliant synthetic datasets mimicking the structure of original data without disclosing any information about individual data points.

Enable cross boundary data analytics

MOSTLY AI

PRODUCT V SOLUTIONS USE CASES V BLOG

usiness insight across ithout moving or exposing

Department of Commerce - National Institute of Standards and Technology

Differential Privacy Synthetic Data Challenge

Propose an algorithm to develop differentially private synthetic datasets to enable the protection of personally identifiable information (PII) while maintaining a dataset's utility for analysis.

Create highly realistic, privacy-safe synthetic datasets proven to be compliant even with the strictest data protection laws.

Synthesized data: 10X the impact, 0 risks

Privacy-compliance for data exploration

Statice offers a data anonymization solution. We enable businesses to stay innovative with smart synthetic data. Our solution empowers companies to work with complex data in a privacy-compliant manner. Data-driven innovation of tomorrow starts with protecting data today.

Synthesized solves the problem of data sharing

Instead of sharing original data, we enable businesses and other data owners to work with compliant synthetic datasets mimicking the structure of original data without disclosing any information about individual data points.

Enable cross boundary data analytics

MOSTLY AI

PRODUCT V SOLUTIONS USE CASES V

usiness insight across ithout moving or exposing

Differential Privacy Synthetic Data Challenge

https://www.odileeds.org/events/synae/

Department of Commerce -National Institute of Standards and Technology

Propose an algorithm to develop differentially private synthetic datasets to enable the protection of personally identifiable information (PII) while maintaining a dataset's utility for analysis.

Synthesized

a sharing

Create highly realistic, privacy-safe synthetic datasets proven to be compliant even with the strictest data protection laws.

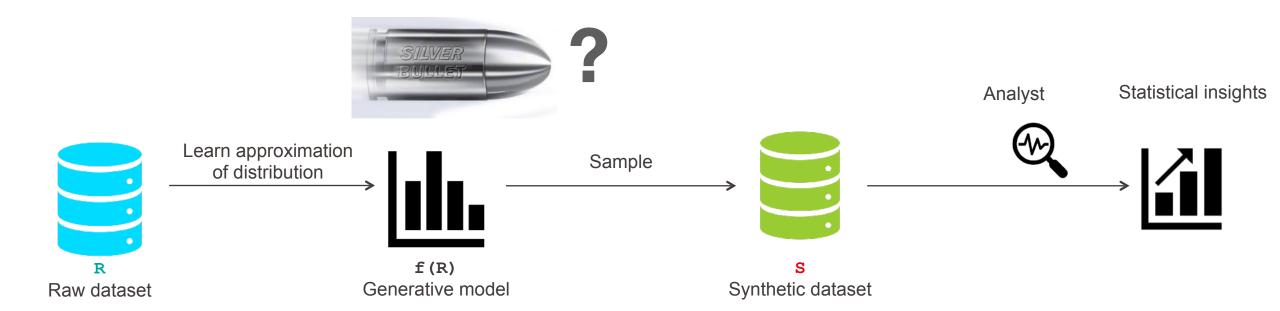
Synthesized data: 10X the impact, 0 risks

Synthesized salves the "ODI Leeds and NHS England will be working together to explore the potential of 'synthetic data.' This is data that has been created following the patterns identified in a real dataset but it contains no Privacy-comp personal data, making it suitable to release as open data. data explo Synthetic data is also great for building and prototyping ideas"

businesses to stay innovative with smart synthetic data. Our solution empowers companies to work with complex data in a privacy-compliant manner. Data-driven innovation of tomorrow starts with protecting data today.

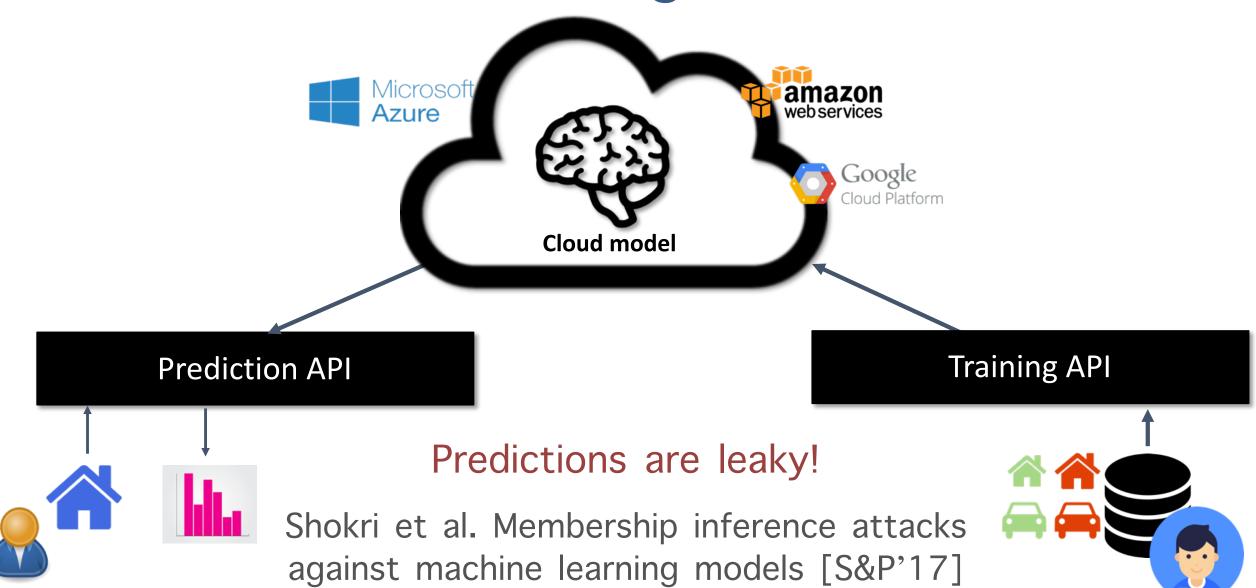
pusinesses and other data owners to work with compliant synthetic datasets mimicking the structure of original data without disclosing any information about individual data points.

The Promise of Synthetic Data



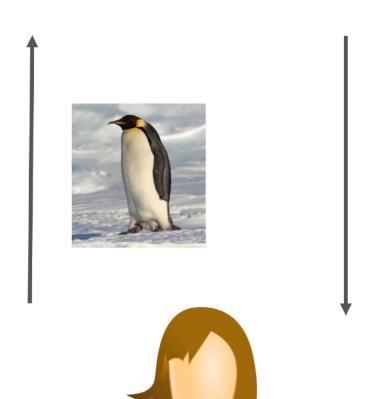
Attacks Against Synthetic Data?

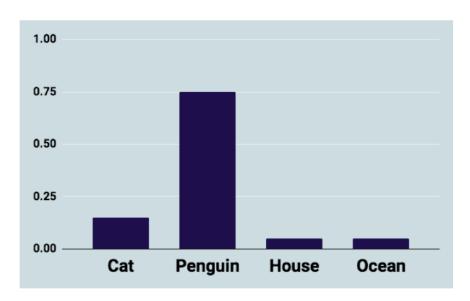
Machine Learning as a Service

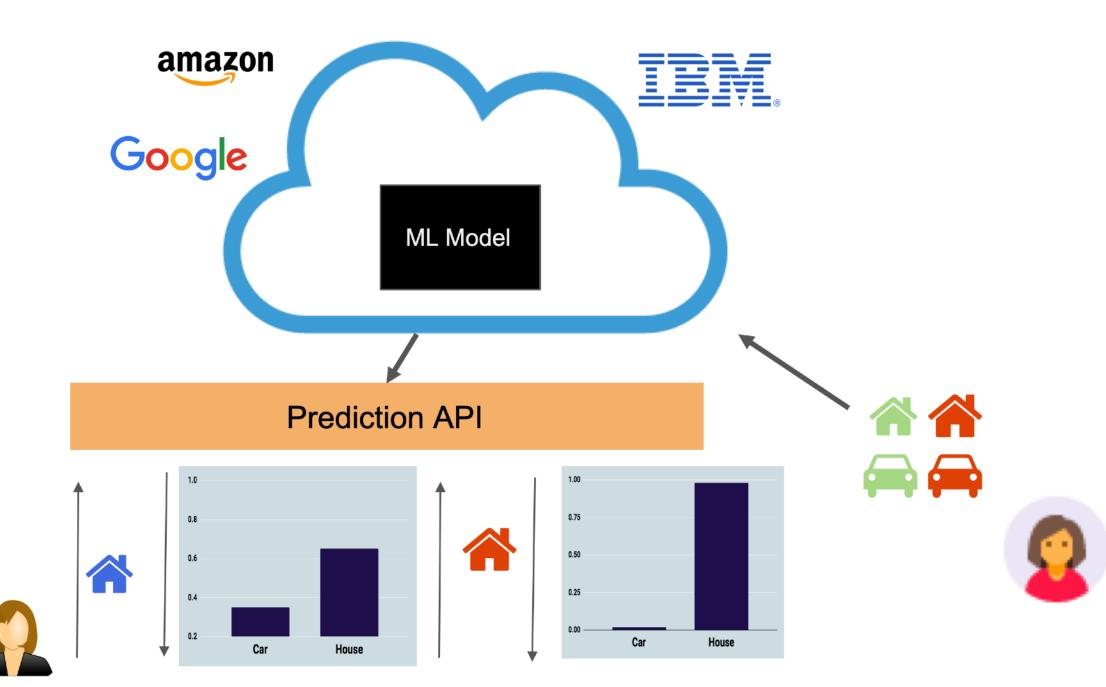


Membership Inference/Discriminative

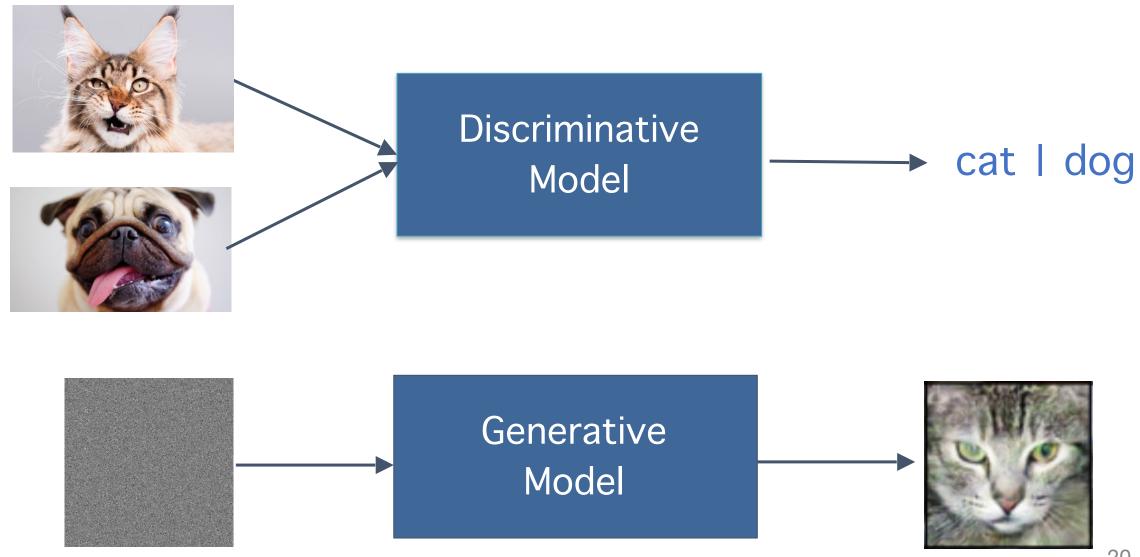
Prediction API



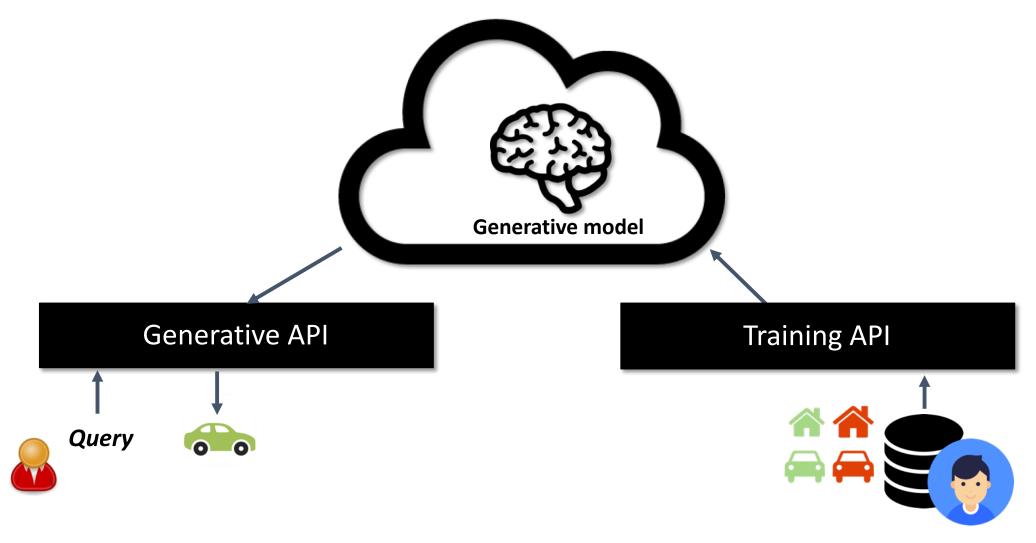




What About Generative Models?



Membership Inference in Generative Models

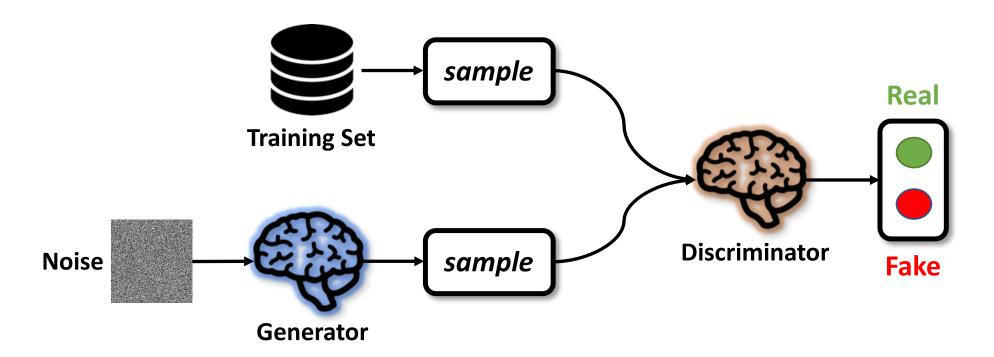


Jamie Hayes, Luca Melis, George Danezis, Emiliano De Cristofaro. LOGAN: Membership Inference Attacks Against Generative Models [PETS 2019]

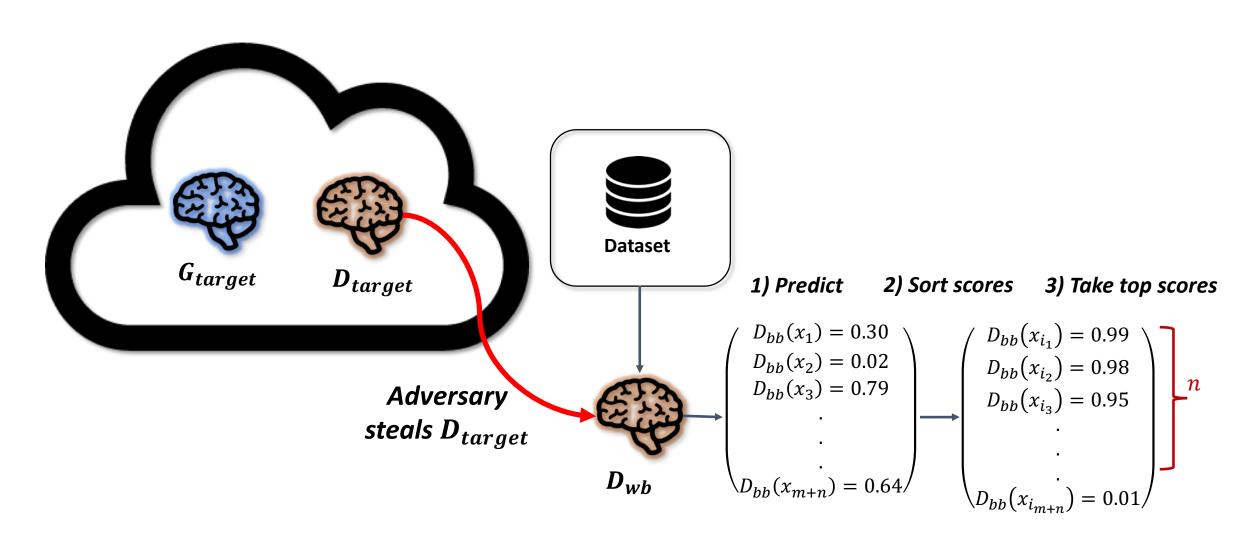
Inference without predictions?

Use generative models!

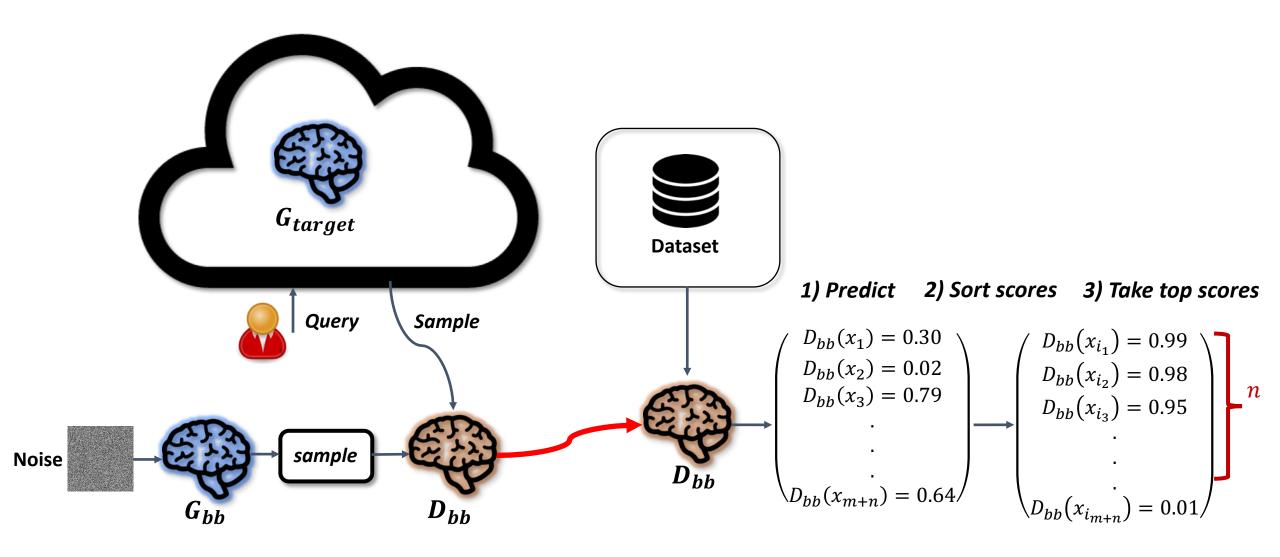
Train GANs to learn the distribution and a prediction model at the same time



White-Box Attack



Black-Box Attack



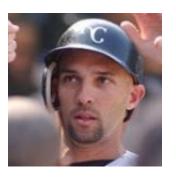
Datasets

Models

sample

sample

LFW

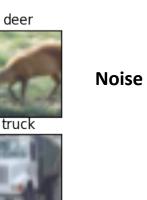


CIFAR-10

DR

bird

cat



Training

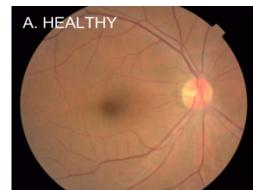
Set

Generator

DCGAN

Target Model:

DCGAN, DCGAN+VAE, BEGAN



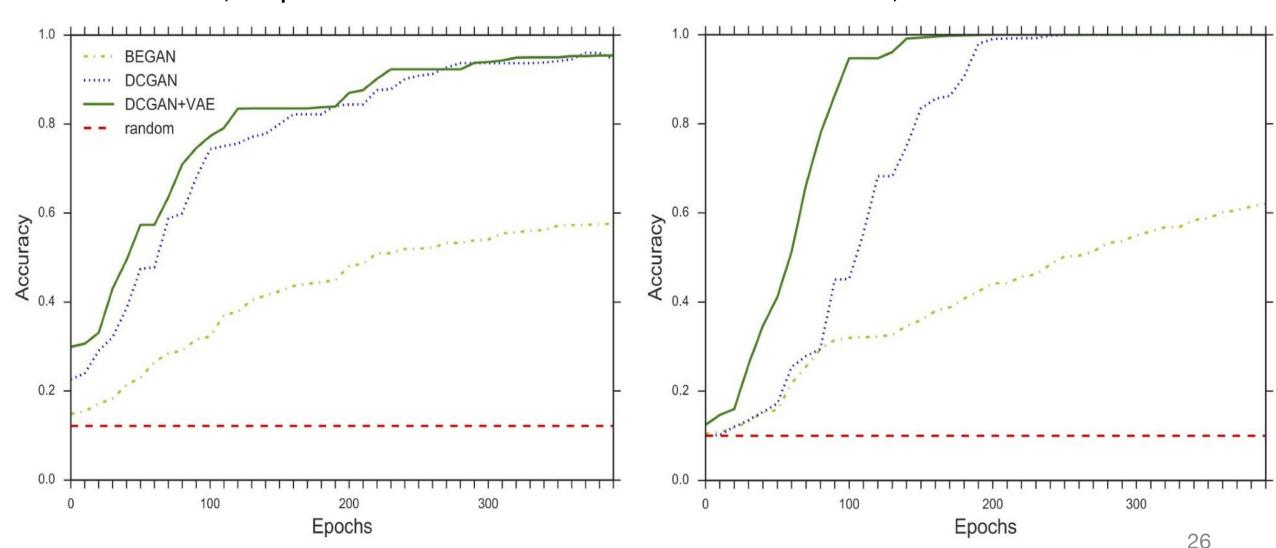
Real

Discriminator

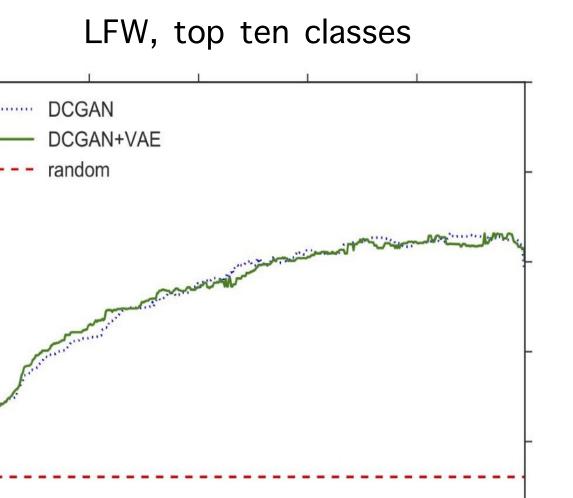
White-Box Results

LFW, top ten classes

CIFAR-10, random 10% subset



Black-Box Results



30000

Steps

40000

0.8

Accuracy

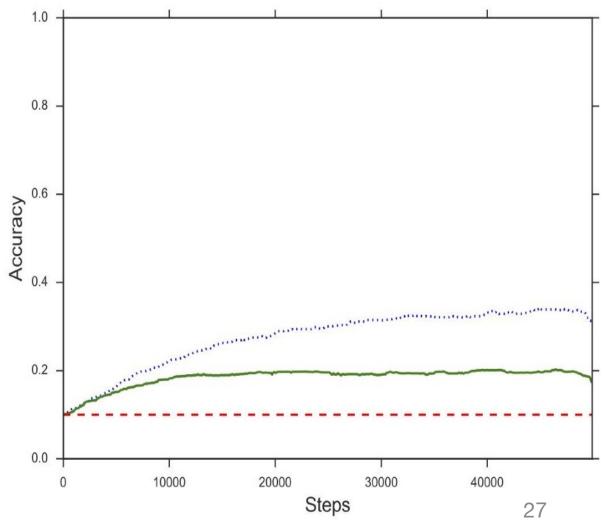
0.2

0.0

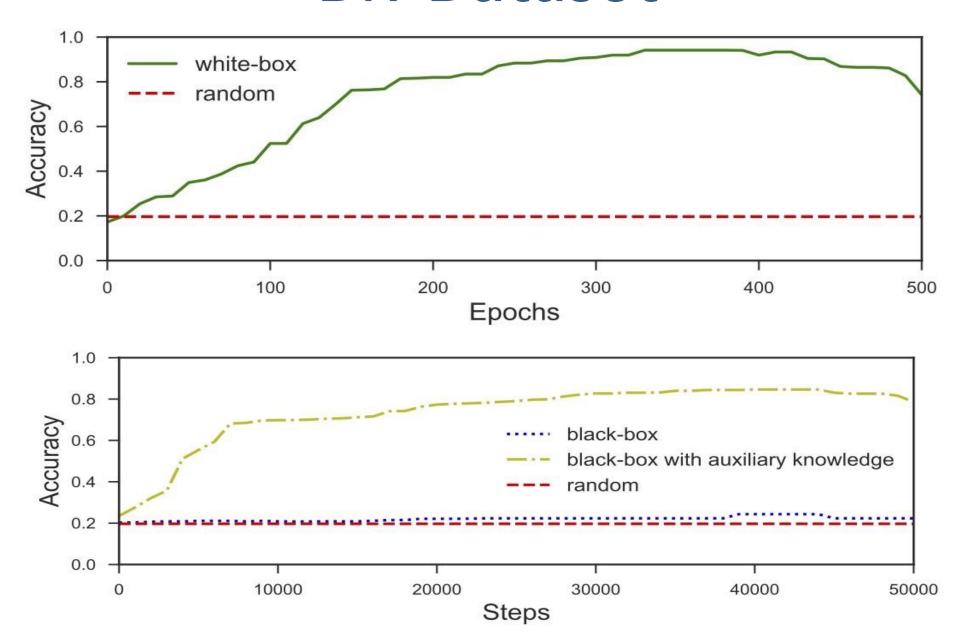
10000

20000

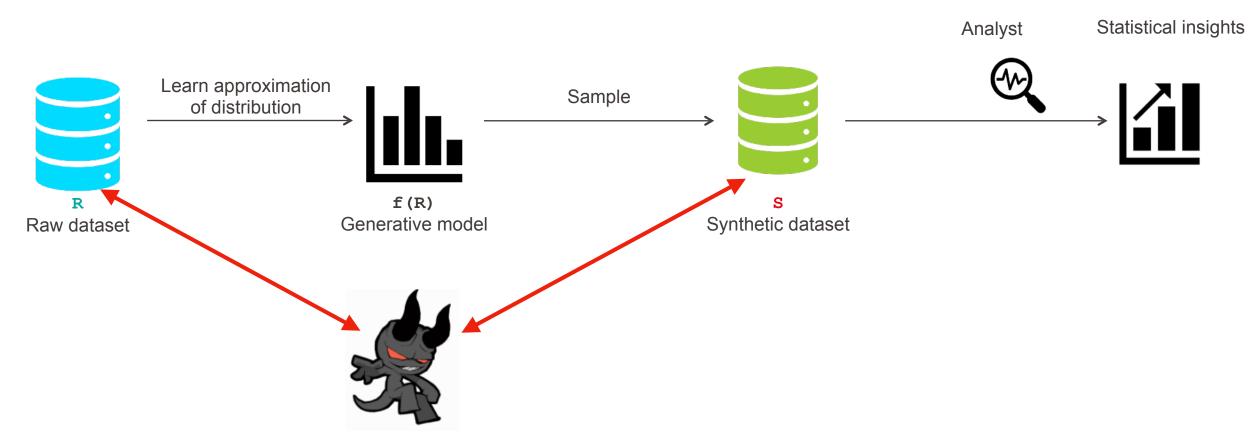
CIFAR-10, random 10% subset

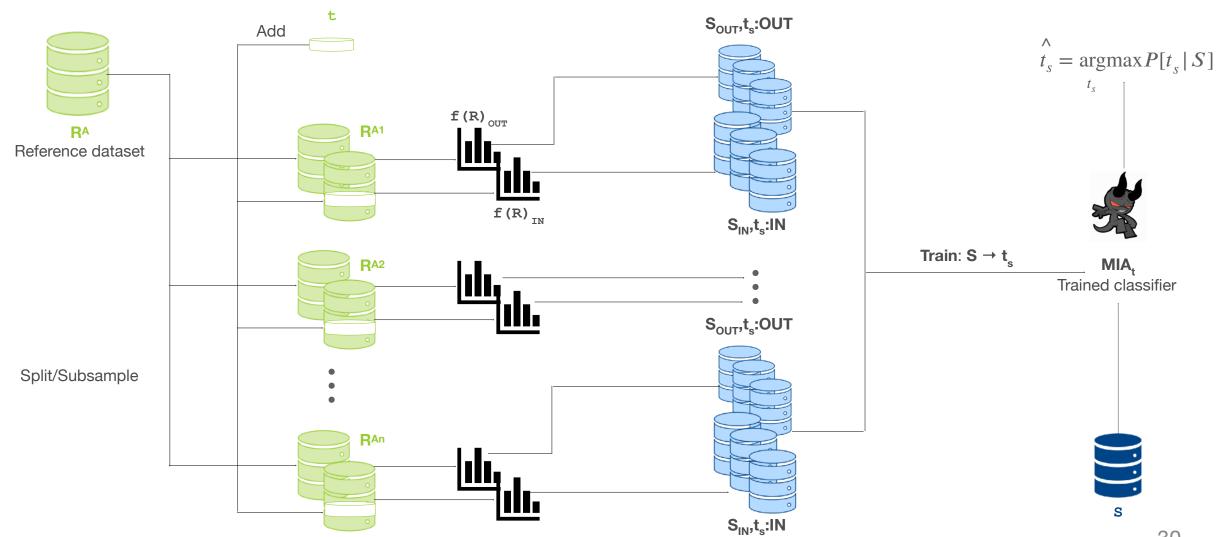


DR Dataset



[Stadler et al., Usenix'21]

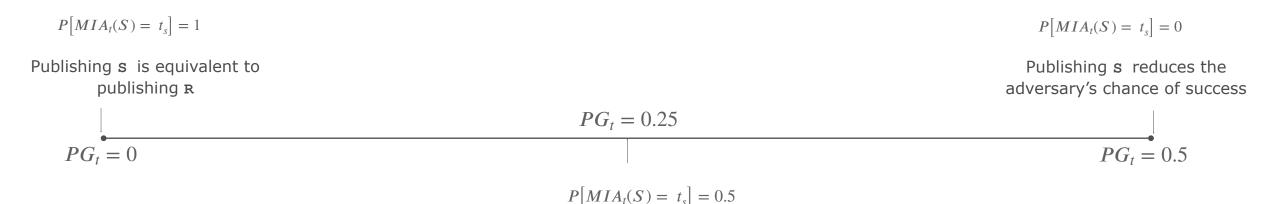




Privacy Gain

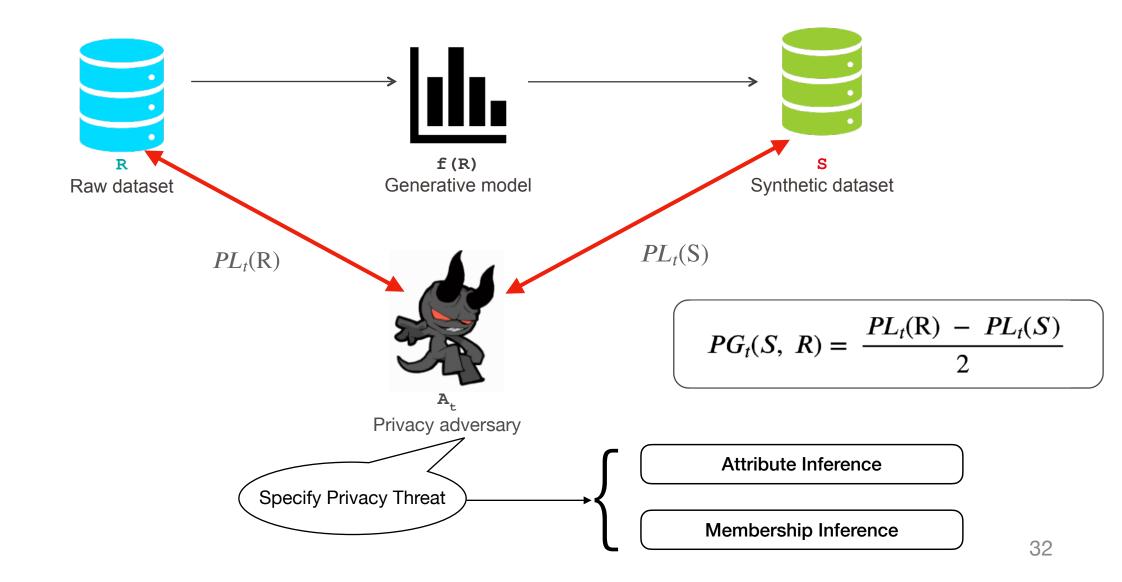
• Under the assumption equal prior $P[t_s] = 0.5$ and perfect linkage in case of raw dataset $P[MIA_t(R) = t_s] = 1$

$$PG_t(S, R) \triangleq \frac{1 - P[MIA_t(S) = t_s]}{2}$$



Publishing s gives the adversary no advantage over random guessing

Privacy Gain



Agenda

Privacy in Machine Learning

Synthetic Data

Privacy (and Utility) in Synthetic Genomic Data

Agenda

Privacy (and Utility) in Synthetic Genomic Data

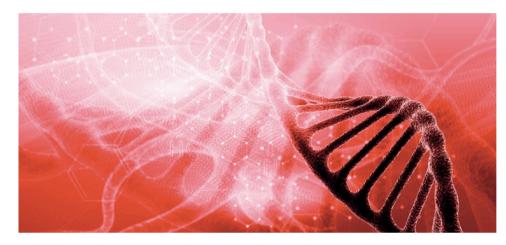
YaleNews

EXPLORE TOPICS ▼

Q

Yale Cancer Center scientists build genomic research platform to help treat cervical cancer

By Anne Doerr OCTOBER 18, 2019



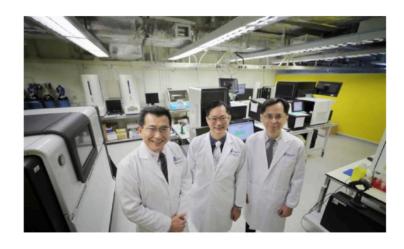
YaleNews

EXPLORE TOPICS ▼

Yale Cancer Center scientists build genomic research platform to help treat cervical cancer

By Anne Doerr OCTOBER 18, 2019

Singapore researchers create world's largest Asian genetic databank



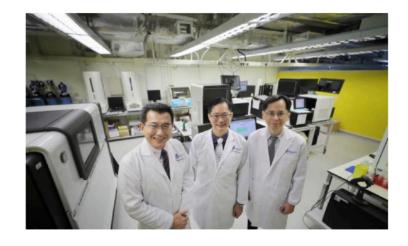
YaleNews

EXPLORE TOPICS ▼

Yale Cancer Center scientists build genomic research platform to help treat cervical cancer

By Anne Doerr OCTOBER 18, 2019

Singapore researchers create world's largest Asian genetic databank



NIH backs new \$7M genome center for All of Us research program

Jackie Drees - 17 hours ago Print I Email

Technology

DNA Test Service Exposed Thousands of Client Records Online

By Nico Grant

9 July 2019, 18:16 BST Updated on 10 July 2019, 21:09 BST

Technology

DNA Test Service Exposed Thousands of Client Records Online

By Nico Grant

9 July 2019, 18:16 BST Updated on 10 July 2019, 21:09 BST

NHS patients' genetic data targeted as foreign hackers attack high security MoD unit

Technology

DNA Test Service Expose Client Records Online

By Nico Grant

9 July 2019, 18:16 BST Updated on 10 July 2019, 21:09 BST

NHS patients' genetic data ta foreign hackers attack high MoD unit

China Uses DNA to Track Its People, With the Help of American Expertise

The Chinese authorities turned to a Massachusetts company and a prominent Yale researcher as they built an enormous system of surveillance and control.

Technology

DNA Test Service Expose Client Records Online

By Nico Grant

9 July 2019, 18:16 BST Updated on 10 July 2019, 21:09 BST

NHS patients' genetic data ta foreign hackers attack high MoD unit

China Uses DNA to Track Its People, With the Help of American Expertise

The Chinese authorities turned to a Massachusetts company and a prominent Yale researcher as they built an enormous system of surveillance and control.

Attacks on genetic privacy via uploads to genealogical databases

Michael D. Edge, D Graham Coop

doi: https://doi.org/10.1101/798272

Technology

DNA Test Service Expose Client Records Online

By Nico Grant

9 July 2019, 18:16 BST Updated on 10 July 2019, 21:09 BST

China Uses DNA to Track Its People, With the Help

MEGAN MOLTENI

SCIENCE 06.28.2019 03:05 PM

Man Found Guilty in a Murder Mystery Cracked By Cousins' DNA

The trial of William Earl Talbott II hinged on a lead from a genealogy site. The verdict will shape the future of crime-fighting and genetic privacy.

npany mous

Attacks on genetic privacy via uploads to genealogical databases

Michael D. Edge, D Graham Coop

doi: https://doi.org/10.1101/798272

Genomic Privacy

Treasure trove of sensitive information

Ethnic heritage, predisposition to diseases

Genome = the ultimate identifier

Hard to anonymize / de-identify

Sensitivity is perpetual

Cannot be "revoked"

Leaking one's genome ≈ leaking relatives' genome

Enter Synthetic Genomic Data

Recombination model (Recomb)*

Restricted Boltzmann Machines (RBM)+

Generative Adversarial Networks (GAN)+

Wasserstein GAN (WGAN)^

Recombination RBM (Rec-RBM), new

Recombination GAN (Rec-GAN), new

*Samani et al. Quantifying genomic privacy via inference attack with high-order SNV correlations +Yelmen et al. Creating Artificial Human Genomes Using Generative Models ^Killoran, et al. Generating and designing DNA with deep generative models

Datasets

CEU Population (HapMap Project)

CHB Population (HapMap Project)

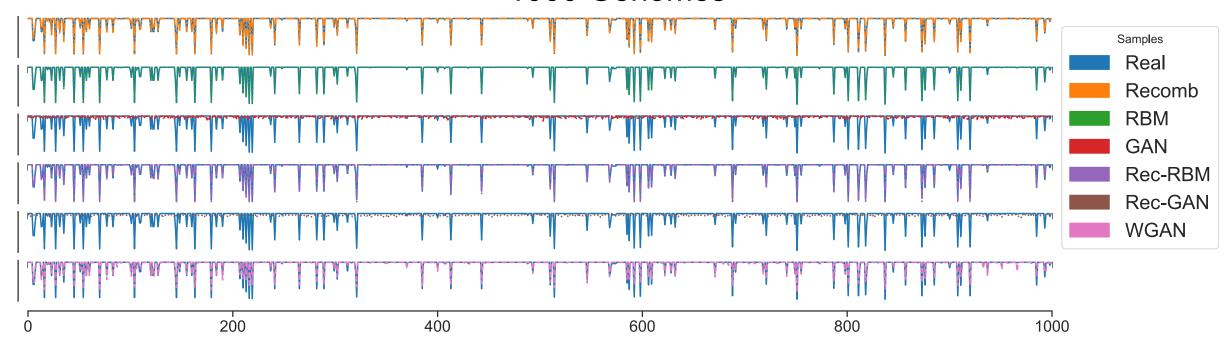
1,000 Genomes Project

Utility

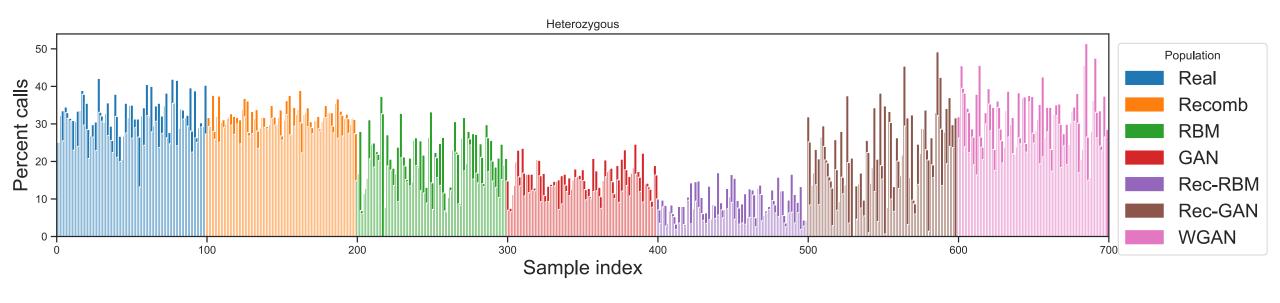
Allele Statistics

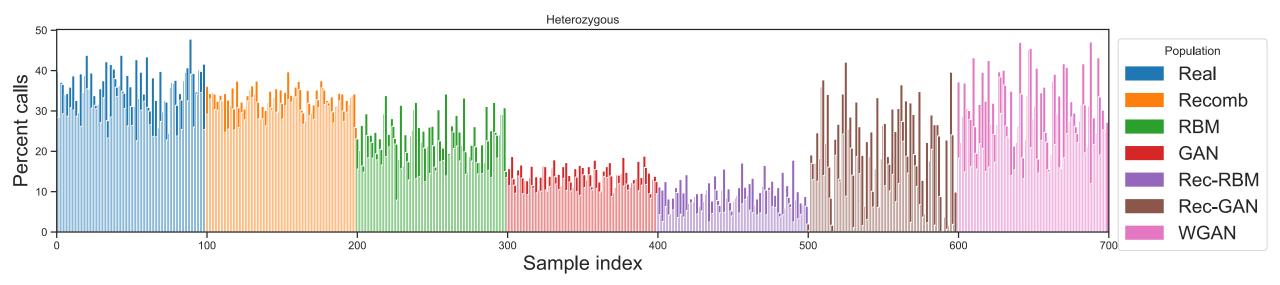
Allele Statistics

1000 Genomes

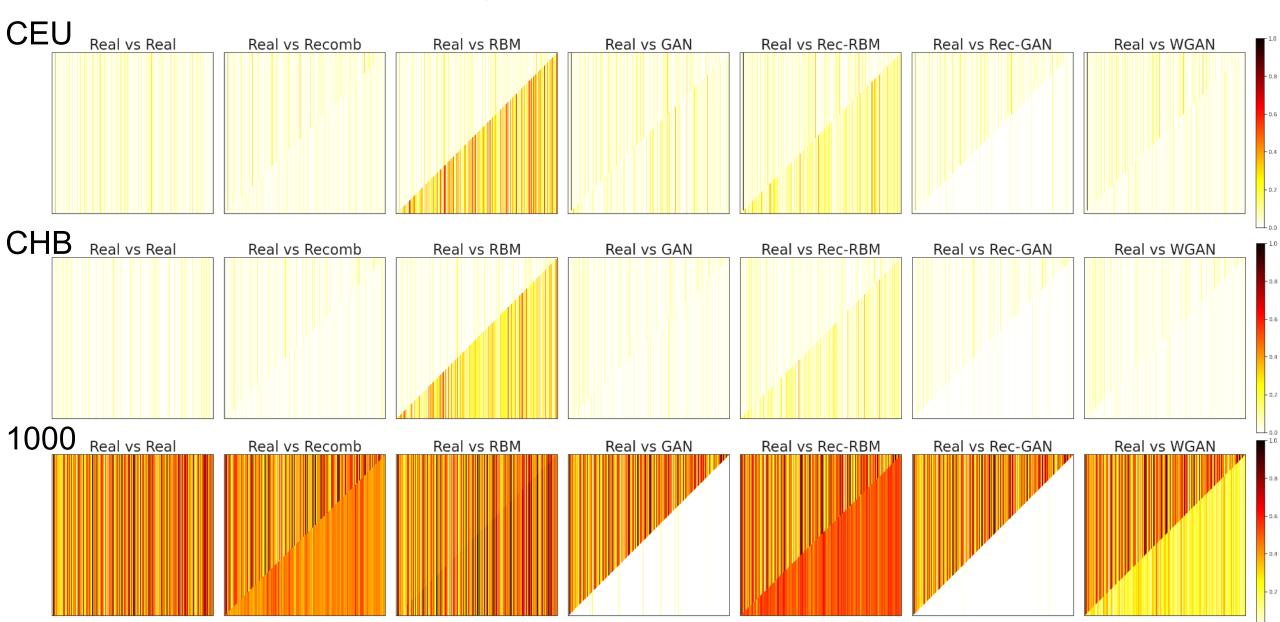


Population Statistics

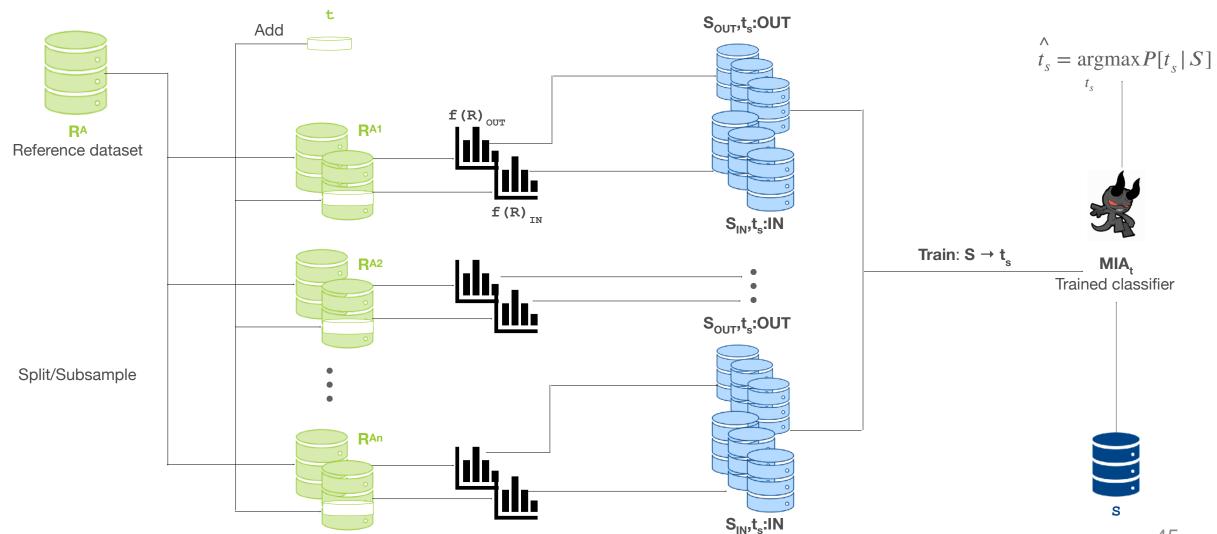


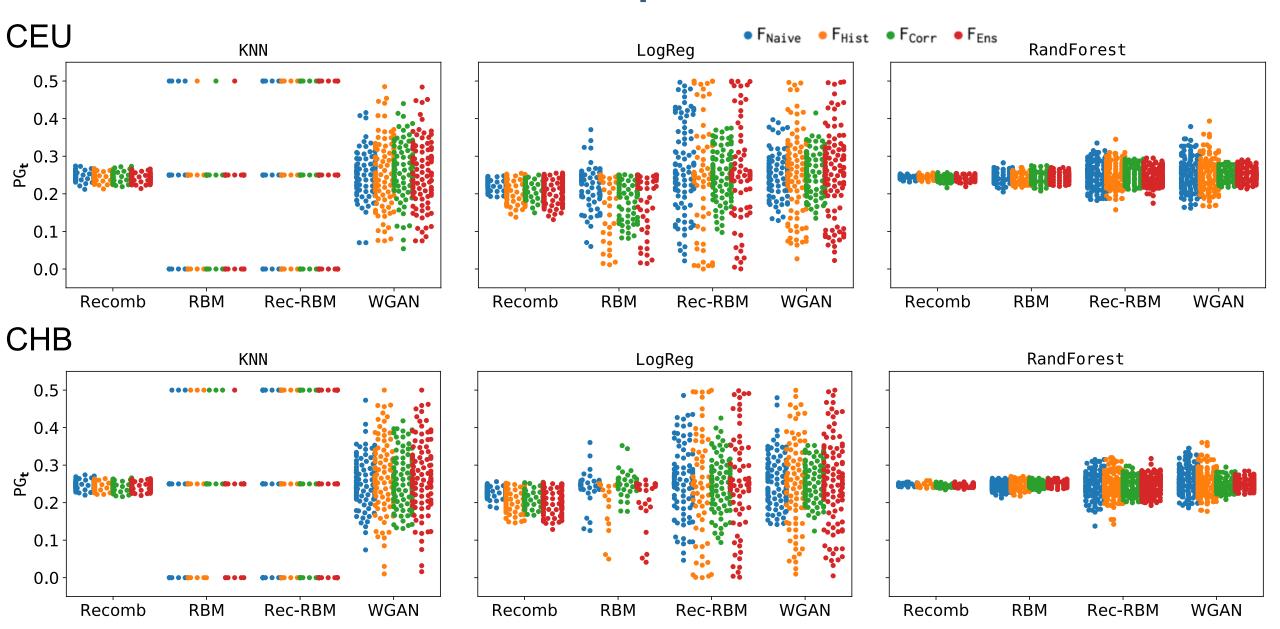


Linkage Disequilibrium

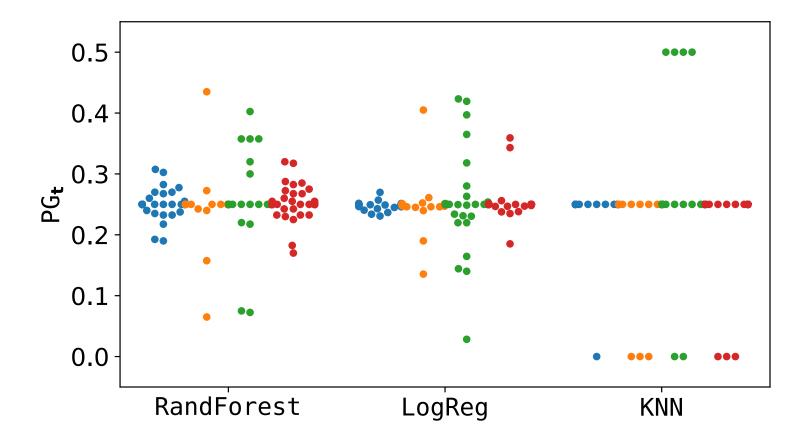


Privacy





1000 Genomes



Membership Inference w Partial Information

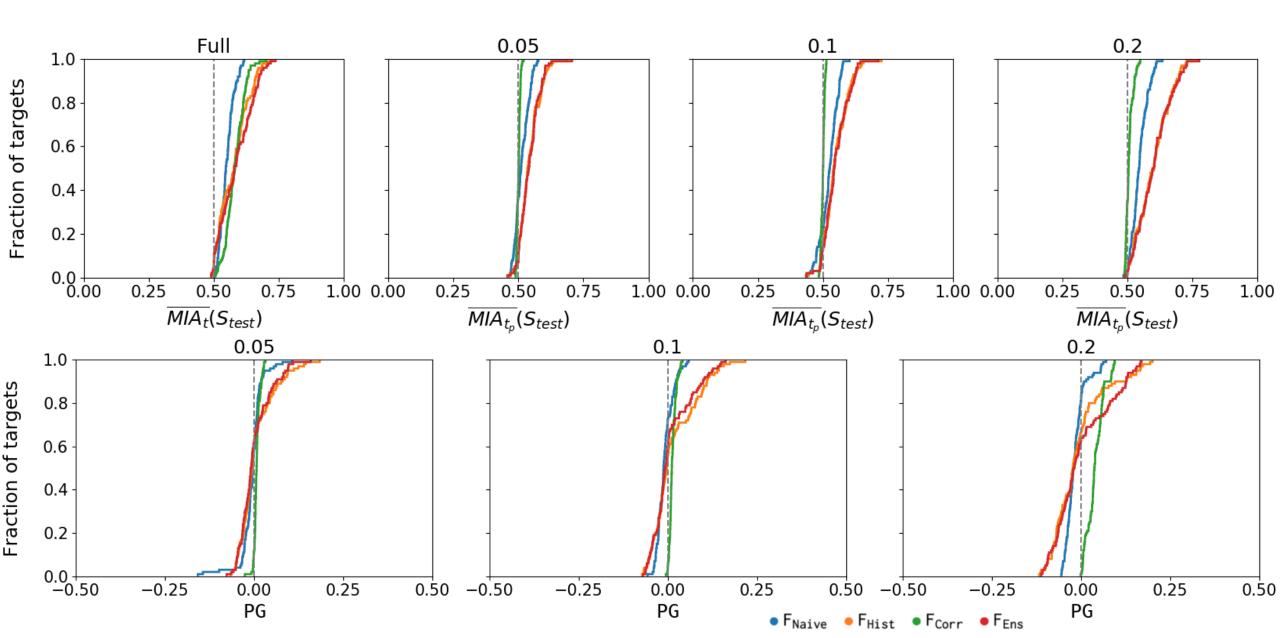
- We only give the attacker access to a fraction of SNVs from the target sequence, chosen at random.
- The attacker then uses the Recombination model as an inference method to predict the rest of the sequence.
- The PG formula needs adjusting:

$$PG_t = \frac{\overline{MIA_{t_p}}(R_t) - \overline{MIA_{t_p}}(S_{test})}{2}, \text{ where}$$

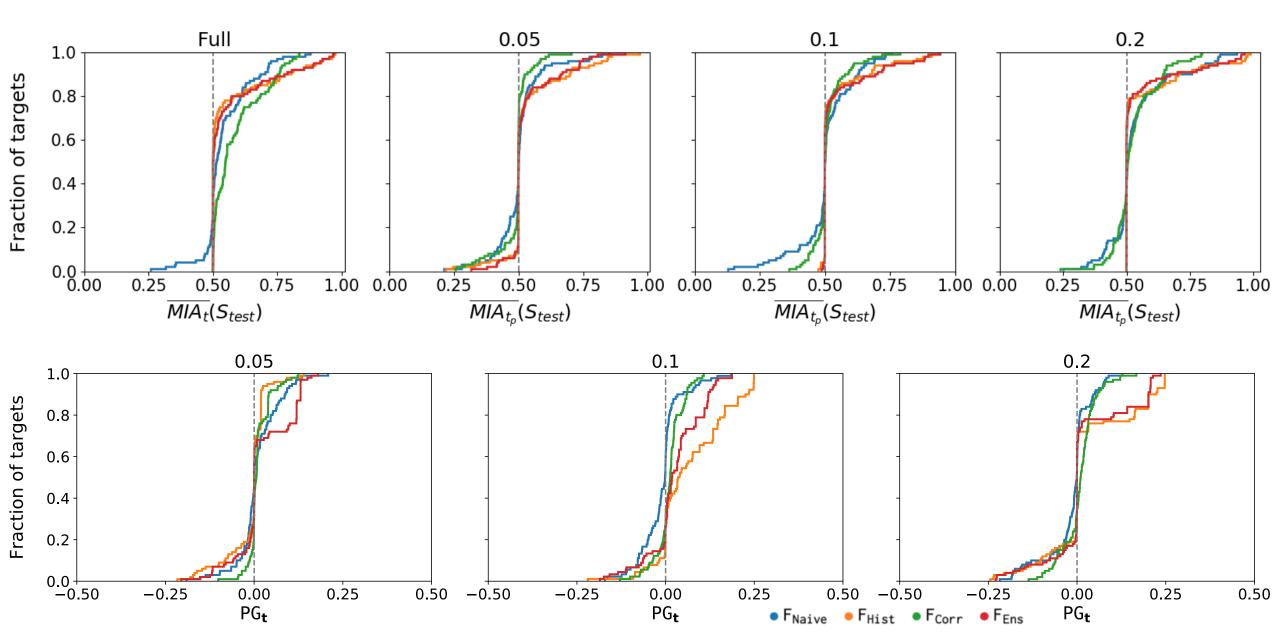
$$\overline{MIA_{t_p}}(S_{test}) = \sum_{S_i \in S_{test}} \frac{\Pr[MIA_{t_p}(S_i) = 1]}{2*n_s}, \text{ and}$$

$$\overline{MIA_{t_p}}(R_t) = \sum_{R_i \in R_t} \frac{\Pr[MIA_{t_p}(R_i) = 1]}{2*n_s}.$$

MIA with Partial Information



MIA with Partial Information



Take Aways

- High-quality synthetic data must accurately capture the relations between data points; however, this can enable attackers to infer sensitive information about the training data used to generate the synthetic data
- The size of the training dataset matters, especially in the case of non-statistical generative models
- Overall, there is no single method that outperforms the others for all metrics and all datasets.

Conclusion

This slide is intentionally left blank.